OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
C. N. Williams; S. L. Cornford; T. M. Jordan; J. A. Dowdeswell; M. J. Siegert; C. D. Clark; D. A. Swift; A. Sole; I. Fenty; J. L. Bamber (2017)
Publisher: Copernicus Publications
Journal: The Cryosphere
Languages: English
Types: 0038
Subjects: GE1-350, QE1-996.5, Environmental sciences, Geology
Bed topography is a critical boundary for the numerical\ud modelling of ice sheets and ice–ocean interactions.\ud A persistent issue with existing topography products for the\ud bed of the Greenland Ice Sheet and surrounding sea floor is\ud the poor representation of coastal bathymetry, especially in\ud regions of floating ice and near the grounding line. Sparse\ud data coverage, and the resultant coarse resolution at the ice–\ud ocean boundary, poses issues in our ability to model ice\ud flow advance and retreat from the present position. In addition,\ud as fjord bathymetry is known to exert strong control\ud on ocean circulation and ice–ocean forcing, the lack\ud of bed data leads to an inability to model these processes\ud adequately. Since the release of the last complete Greenland\ud bed topography–bathymetry product, new observational\ud bathymetry data have become available. These data can be\ud used to constrain bathymetry, but many fjords remain completely\ud unsampled and therefore poorly resolved. Here, as\ud part of the development of the next generation of Greenland\ud bed topography products, we present a new method for constraining\ud the bathymetry of fjord systems in regions where\ud data coverage is sparse. For these cases, we generate synthetic\ud fjord geometries using a method conditioned by surveys\ud of terrestrial glacial valleys as well as existing sinuous\ud feature interpolation schemes. Our approach enables the capture\ud of the general bathymetry profile of a fjord in north-west\ud Greenland close to Cape York, when compared to observational\ud data. We validate our synthetic approach by demonstrating\ud reduced overestimation of depths compared to past\ud attempts to constrain fjord bathymetry. We also present an\ud analysis of the spectral characteristics of fjord centrelines using\ud recently acquired bathymetric observations, demonstrating\ud how a stochastic model of fjord bathymetry could be parameterised\ud and used to create different realisations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., and Evans, J.: A new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other processes, Geochemistry Geophysics Geosystems, 1541-1576, doi:10.1002/2015GC005931, 2015.
    • Bai, X., Latecki, L. J., and Liu, W. Y.: Skeleton pruning by contour partitioning with discrete curve evolution, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 449-462, doi:10.1109/TPAMI.2007.59, 2007.
    • Bamber, J. L. and Layberry, R. L.: A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors, Journal of Geophysical Research, 106, 33,773-33,780, doi:10.1029/2001JD900054, 2001.
    • Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499-510, doi:10.5194/tc-7-499-2013, 2013.
    • Batchelor, C. L. and Dowdeswell, J. A.: The physiography of High Arctic cross-shelf troughs, Quaternary Science Reviews, 92, 68-96, doi:10.1016/j.quascirev.2013.05.025, 2014.
    • Bell, T. H.: Statistical features of sea-floor topography, Deep-Sea Research, 22, 883-892, doi:10.1016/0011-7471(75)90090-X, 1975.
    • Bindschadler, R. A., Nowicki, S., Abe-OUCHI, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), Journal of Glaciology, 59, 195- 224, doi:10.3189/2013JoG12J125, 2013.
    • Blum, H.: A transformation for extracting new descriptors of shape, in: Models for the Perception of Speech and Visual Form, edited by Wathen-Dunn, W., 362-381, MIT Press, second edn., 1967.
    • Boghosian, A., Tinto, K., Cochran, J. R., Porter, D., Elieff, S., Burton, B. L., and Bell, R. E.: Resolving bathymetry from airborne gravity along Greenland fjords, Journal of Geophysical Research: Solid Earth, 120, 8516-8533, doi:10.1002/2015JB012129, 2015.
    • Coles, R. J.: The cross-sectional characteristics of glacial valleys and their spatial variability, PhD thesis, Univeristy of Sheffield, http: //, 2014.
    • Cook, S. J. and Swift, D. A.: Subglacial basins: Their origin and importance in glacial systems and landscapes, Earth-Science Reviews, 115, 332-372, doi:10.1016/j.earscirev.2012.09.009,, 2012.
    • Dentith, M. and Mudge, S. T.: Geophysics for the Mineral Exploration Geoscientist, Cambridge University Press, Cambridge, UK, 2014.
    • Deutsch, C. V. and Journel, A. G.: GSLIB: Geostatistical Software Library and User's Guide, Oxford University Press, Oxford, second edn., 1998.
    • Dowdeswell, J. A., Hogan, K. A., Ó Cofaigh, C., Fugelli, E. M. G., Evans, J., and Noormets, R.: Late Quaternary ice flow in a West Greenland fjord and cross-shelf trough system: Submarine landforms from Rink Isbrae to Uummannaq shelf and slope, Quaternary Science Reviews, 92, 292-309, doi:10.1016/j.quascirev.2013.09.007, 2014.
    • Durand, G., Gagliardini, O., Favier, L., Zwinger, T., and Le Meur, E.: Impact of bedrock description on modeling ice sheet dynamics, Geophysical Research Letters, 38, L20501, doi:10.1029/2011GL048892, 2011.
    • Fadlelmula F., M. M., Killough, J., and Fraim, M.: TiConverter: A training image converting tool for multiple-point Geostatistics, Computers & Geosciences, 96, 47-55, doi:10.1016/j.cageo.2016.07.002, 2016.
    • Goff, J. A. and Jordan, T. H.: Stochastic Modeling of Seafloor Morphology' Inversion of Sea Beam Data for Second-Order Statistics, Journal of Geophysical Research, 93, 13,589-13,608, doi:10.1029/JB093iB11p13589, 1988.
    • Goff, J. A. and Nordfjord, S.: Interpolation of Fluvial Morphology Using Channel-Oriented Coordinate Transformation: A Case Study from the New Jersey Shelf, Mathematical Geology, 36, 643-658, doi:10.1023/, 2004.
    • Goff, J. A., Powell, E. M., Young, D. A., and Blankenship, D. D.: Conditional simulation of Thwaites Glacier (Antarctica) bed topography for flow models: incorporating inhomogeneous statistics and channelized morphology, Journal of Glaciology, 60, 635-646, doi:10.3189/2014jog13j200, 2014.
    • Gogineni, S., Tammana, D., Braaten, D., Leuschen, C., Akins, T., Legarsky, J., Kanagaratnam, P., Stiles, J., Allen, C., and Jezek, K.: Coherent radar ice thickness measurements over the Greenland ice sheet, Journal of Geophysical Research, 106, 33,761-33,772, doi:10.1029/2001JD900183, 2001.
    • Herzfeld, U. C., Wallin, B. F., Leuschen, C. J., and Plummer, J.: An algorithm for generalizing topography to grids while preserving subscale morphologic characteristics-creating a glacier bed DEM for Jakobshavn trough as low-resolution input for dynamic ice-sheet models, Computers & Geosciences, 37, 1793-1801, doi:10.1016/j.cageo.2011.02.021, 2011.
    • Hock, R. and Jensen, H.: Application of Kriging Interpolation for Glacier Mass Balance Computations, Geografiska Annaler: Series A, Physical Geography, 81, 611-619, doi:10.1111/1468-0459.00089, 1999.
    • Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509-1518, doi:10.5194/tc-8-1509-2014, 2014.
    • Jakobsson, M., Mayer, L. A., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O. B., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, 39, L12 609, doi:10.1029/2012GL052219, 2012.
    • James, W. H. M. and Carrivick, J. L.: Computers & Geosciences Automated modelling of spatially-distributed glacier ice thickness and volume, Computers and Geosciences, 92, 90-103, doi:10.1016/j.cageo.2016.04.007, 2016.
    • Kienholz, C., Rich, J. L., Arendt, A. A., and Hock, R.: A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada, Cryosphere, 8, 503-519, doi:10.5194/tc-8-503-2014, 2014.
    • Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K., Bjørk, A. A., and Kjaer, K. H.: Digital Elevation Model and orthophotographs of Greenland based on aerial photographs from 1978-1987, Scientific Data, 3, doi:10.1038/sdata.2016.32, 2016.
    • Le Brocq, A. M., Payne, A. J., and Vieli, A.: An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1), Earth System Science Data, 2, 247-260, doi:10.5194/essd-2-247-2010, 2010.
    • Lee, V., Cornford, S. L., and Payne, A. J.: Initialization of an ice-sheet model for present-day Greenland, Annals of Glaciology, 56, 129-140, doi:10.3189/2015AoG70A121, 2015.
    • Merwade, V., Maidment, D., and Hodges, B.: Geospatial Representation of River Channels, Journal of Hydrological Engineering, 10, 243- 251, doi:10.1061/(ASCE)1084-0699(2005)10:3(243), 2005.
    • Merwade, V., Cook, A., and Coonrod, J.: GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping, Environmental Modelling & Software, 23, 1300-1311, doi:10.1016/j.envsoft.2008.03.005, 2008.
    • Merwade, V. M., Maidment, D. R., and Goff, J. A.: Anisotropic considerations while interpolating river channel bathymetry, Journal of Hydrology, 331, 731-741, doi:10.1016/j.jhydrol.2006.06.018, 2006.
    • Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.: A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19 503, doi:10.1029/2011gl048659, 2011.
    • Morlighem, M., Rignot, E., Mouginot, J., Seroussi, H., and Larour, E.: Deeply incised submarine glacial valleys beneath the Greenland ice sheet, Naturea Geoscience, 7, 418-422, doi:10.1038/ngeo2167, 2014.
    • Murray, T., Scharrer, K., James, T. D., Dye, S. R., Hanna, E., Booth, A. D., Selmes, N., Luckman, A., Hughes, A. L. C., Cook, S., and Huybrechts, P.: Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes, J. Geophys. Res., 115, F03 026, doi:10.1029/2009jf001522, 2010.
    • OMG Mission. Bathymetry (sea floor depth) data from the ship-based bathymetry survey. Ver. 0.1. OMG SDS, CA, USA, Dataset accessed 2016-08-30,, 2016.
    • Patton, H., Swift, D. A., Clark, C. D., Livingstone, S. J., Cook, S. J., and Hubbard, A.: Automated mapping of glacial overdeepenings beneath contemporary ice sheets: Approaches and potential applications, Geomorphology, 232, 209-223, doi:10.1016/j.geomorph.2015.01.003, 2015.
    • Patton, H., Swift, D. A., Clark, C. D., Livingstone, S. J., and Cook, S. J.: Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution, Quaternary Science Reviews, 148, 128-145, doi:10.1016/j.quascirev.2016.07.012, 2016.
    • Rignot, E., Fenty, I., Xu, Y., Cai, C., Velicogna, I., Cofaigh, C. O., Dowdeswell, J. A., Weinrebe, W., Catania, G., and Duncan, D.: Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland, Geophysical Research Letters, 43, 2667-2674, doi:10.1002/2016GL067832, 2016.
    • Schjøth, F., Andresen, C. S., Straneo, F., Murray, T., Scharrer, K., and Korablev, A.: Campaign to map the bathymetry of a major Greenland fjord, Eos Transactions AGU, 93, 141-142, doi:10.1029/2012EO140001, 2012.
    • Seroussi, H., Morlighem, M., Rignot, E., Larour, E., Aubry, D., Ben Dhia, H., Kristensen, S. S., Dhia, H. B., and Kristensen, S. S.: Ice flux divergence anomalies on 79north Glacier, Greenland, Geophysical Research Letters, 38, L09501, doi:10.1029/2011GL047338, 2011.
    • Shepard, M. K., Brackett, R. A., and Arvidson, R. E.: Self-affine ( fractal ) topography : Surface parameterization and radar scattering Radar, Journal of Geophysical Research, 100, 11,709-11,718, doi:10.1029/95JE00664, 1995.
    • Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., and Plaut, J. J.: The roughness of natural terrain: A planetary and remote sensing perspective, Journal of Geophysical Research: Planets, 106, 32 777-32 795, doi:10.1029/2000JE001429, 2001.
    • Strahler, A. N.: Quantitative Analysis of Watershed Geomorphology, Transactions, American Geophysical Union, 38, 913-920, doi:10.1029/TR038i006p00913, 1957.
    • Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C., Våge, K., and Stearns, L. A.: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier, Nature Geoscience, 4, 322-327, doi:10.1038/ngeo1109, 2011.
    • Sun, S., Cornford, S. L., Liu, Y., and Moore, J. C.: Dynamic response of Antarctic ice shelves to bedrock uncertainty, The Cryosphere, 8, 1561-1576, doi:10.5194/tc-8-1561-2014, 2014.
    • Syvitski, J. P., Burrell, D. C., and Skei, J. M.: Fjords: Processes and Products, Springer, Berlin, doi:10.1007/978-1-4612-4632-9, 1987.
    • Tyan, F., Hong, Y.-F., Tu, S.-H., and Jeng, W. S.: Generation of random road profiles, Journal of Advanced Engineering, 1373-1378, 2009.
    • Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A structure for efficient numerical computation, Computing in Science and Engineering, 13, 22-30, doi:10.1109/MCSE.2011.37, 2011.
    • Van Der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T.: scikit-image: image processing in Python, PeerJ, 2, e453, doi:10.7717/peerj.453, 2014.
    • 10 15 20 Along transect distance (km)
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok