LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Wiley
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2792
The use of kilometre-scale ensembles in operational forecasting provides new challenges for forecast interpretation and evaluation to account for uncertainty on the convective scale. A new neighbourhood based method is presented for evaluating and characterising the local predictability variations from convective scale ensembles. Spatial scales over which ensemble forecasts agree (agreement scales, S^A) are calculated at each grid point ij, providing a map of the spatial agreement between forecasts. By comparing the average agreement scale obtained from ensemble member pairs (S^A(mm)_ij), with that between members and radar observations (S^A(mo)_ij), this approach allows the location-dependent spatial spread-skill relationship of the ensemble to be assessed. The properties of the agreement scales are demonstrated using an idealised experiment. To demonstrate the methods in an operational context the S^A(mm)_ij and S^A(mo)_ij are calculated for six convective cases run with the Met Office UK Ensemble Prediction System. The S^A(mm)_ij highlight predictability differences between cases, which can be linked to physical processes. Maps of S^A(mm)_ij are found to summarise the spatial predictability in a compact and physically meaningful manner that is useful for forecasting and for model interpretation. Comparison of S^A(mm)_ij and S^A(mo)_ij demonstrates the case-by-case and temporal variability of the spatial spread-skill, which can again be linked to physical processes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • c Ancell BC. 2013. Nonlinear characteristics of ensemble perturbation
    • Weather Aand Forecasting 28(6): 1353-1365. Baker L, Rudd A, Migliorini S, Bannister R. 2014. Representation
    • Nonlinear Processes in Geophysics 21(1): 19-39. Baldauf M, Seifert A, Fo¨rstner J, Majewski D, Raschendorfer
    • M, Reinhardt T. 2011. Operational convective-scale numerical
    • sensitivities. Monthly Weather Review 139(12): 3887-3905. Ben Bouall`egue Z, Theis SE. 2014. Spatial techniques applied
    • probabilistic products. Meteorological Applications 21(4): 922-
    • 929. Blyth AM, Bennett LJ, Collier CG. 2015. High-resolution
    • Meteorological Applications 22(1): 75-89. Bouttier F, Vi´e B, Nuissier O, Raynaud L. 2012. Impact of stochastic
    • Review 140(11): 3706-3721. Bowler NE, Arribas A, Beare SE, Mylne KR, Shutts GJ. 2009.
    • Meteorological Society 135(640): 767-776. Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE.
    • 2008. The MOGREPS short-range ensemble prediction system.
    • Quarterly Journal of the Royal Meteorological Society 134(632):
    • 703-722. Bowler NE, Pierce CE, Seed AW. 2006. STEPS: A probabilistic
    • Meteorological Society 132(620): 2127-2155. Browning KA, Roberts NM. 1994. Use of satellite imagery to
    • study. Meteorological Applications 1(4): 303-310. Browning KA, Roberts NM. 1995. Use of satellite imagery to
    • case study. Meteorological Applications 2(1): 3-9. Buizza R. 1997. Potential forecast skill of ensemble prediction and
    • system. Monthly Weather Review 125: 99-119. Buizza R, Houtekamer P, Pellerin G, Toth Z, Zhu Y, Wei M. 2005.
    • prediction systems. Monthly Weather Review 133(5): 1076-1097. Burt S. 2005. Cloudburst upon Hendraburnick down: the Boscastle
    • storm of 16 August 2004. Weather 60(8): 219-227. Clark AJ, Gao J, Marsh PT, Smith T, Kain JS, Correia Jr J, Xue
    • M, Kong F. 2013. Tornado pathlength forecasts from 2010 to 2011
    • using ensemble updraft helicity. Weather and Forecasting 28(2):
    • 387-407. Clark AJ, Kain JS, Stensrud DJ, Xue M, Kong F, Coniglio
    • MC, Thomas KW, Wang Y, Brewster K, Gao J, et al. 2011.
    • Weather Review 139(5): 1410-1418. Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth
    • A, White AA, Wood N. 2005. A new dynamical core for the
    • Quarterly Journal of the Royal Meteorological Society 131(608):
    • 1759-1782. Dey SR, Leoncini G, Roberts NM, Plant RS, Migliorini S. 2014.
    • ensembles. Monthly Weather Review 142(11): 4091-4107. Duc L, Saito K, Seko H. 2013. Spatial-temporal fractions verification
    • for high-resolution ensemble forecasts. Tellus A 65(0). Ebert EE. 2008. Fuzzy verification of high-resolution gridded
    • Applications 15(1): 51-64. Edwards JM, Slingo A. 1996. Studies with a flexible new radiation
    • Quarterly Journal of the Royal Meteorological Society 122(531):
    • 689-719. Essery cR,Best M, Cox P. 2001. MOSES 2.2 technical
    • documientation. Technical report, Hadley Centre Technical Note. GebhartdtC, Theis S, Paulat M, Ben Bouall`egue Z. 2011.
    • Atmospheric Research 100(2): 168-177. Gilleland E, Ahijevych D, Brown BG, Casati B, Ebert EE. 2009.
    • and Forecasting 24(5): 1416-1430. Golding B, Ballard S, Mylne K, Roberts N, Saulter A, Wilson C,
    • Agnew dP,Davis L, Trice J, Jones C, et al. 2014. Forecasting
    • capabilities for the London 2012 olympics. Bulletin of the
    • AmereicanMeteorological Society 95(6): 883-896. Golding B, Clark P, May B. 2005. The Boscastle flood:
    • 16 August 2004. Weather 60(8): 230-235. Golding pBW. 1998. Nimrod: a system for generating automated very
    • short range forecasts. Meteorological Applications 5(1): 1-16.
    • e Gray M, Marshall C. 1998. Mesoscale convective systems over the
    • UK, 1981-97. Weather 53(11): 388-396.
    • c Hanley K, Kirshbaum D, Roberts N, Leoncini G. 2013. Sensitivities
    • Monthly Weather Review 141(1): 112-133. Hanley KE, Kirshbaum DJ, Belcher SE, Roberts NM, Leoncini
    • G. 2011. Ensemble predictability of an isolated mountain
    • the Royal Meteorological Society 137(661): 2124-2137. Harrison DL, Driscoll SJ, Kitchen M. 2000. Improving precipitation
    • techniques. Meteorological Applications 7(2): 135-144. Harrison DL, Norman K, Pierce C, Gaussiat N. 2012. Radar
    • the ICE - Water Management 165: 89-103(14). Hohenegger C, Scha¨r C. 2007. Atmospheric predictability at
    • Meteorological Society 88(7): 1783-1793. Johnson A, Wang X. 2012. Verification and calibration of neighbor-
    • Review 140(9): 3054-3077. Johnson A, Wang X, Xue M, Kong F, Zhao G, Wang Y, Thomas
    • KW, Brewster KA, Gao J. 2014. Multiscale characteristics and
    • method of perturbation. Monthly Weather Review 142(3): 1053-
    • 1073. Kong F, Droegemeier KK, Hickmon NL. 2007. Multiresolution
    • 135(3): 759-782. Lean HW, Clark PA, Dixon M, Roberts NM, Fitch A, Forbes R,
    • Halliwell C. 2008. Characteristics of high-resolution versions of
    • United Kingdom. Monthly weather review 136(9): 3408 - 3424. Leon DC, French JR, Lasher-Trapp S, Blyth AM, Abel SJ, Ballard
    • S, Barrett A, Bennett LJ, Bower K, Brooks B, et al. 2015. The
    • of the American Meteorological Society doi:10.1175/BAMS-D-14-
    • 00157.1. Leoncini G, Plant R, Gray S, Clark P. 2013. Ensemble forecasts of a
    • the Royal Meteorological Society 139(670): 198-211. Leoncini G, Plant RS, Gray SL, Clark PA. 2010. Perturbation
    • growth at the convective scale for CSIP IOP18. Quarterly Journal
    • of the Royal Meteorological Society 136(648): 653-670. Leutbecher M, Palmer TN. 2008. Ensemble forecasting. Journal of
    • Computational Physics 227: 3515-3539. Lewis MW, Gray SL. 2010. Categorisation of synoptic environments
    • Atmospheric Research 97(1): 194-213. Lock A, Brown A, Bush M, Martin G, Smith R. 2000. A new
    • single-column model tests. Monthly Weather Review 128(9):
    • 3187-3199. Mass CF, Ovens D, Westrick K, Colle BA. 2002. Does increasing
    • the American Meteorological Society 83(3): 407-430.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article