LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Han, Guang; Popuri, Srinivas R.; Greer, Heather F.; Ferre Llin, Lourdes; Bos, Jan-Willem G.; Zhou, Wuzong; Paul, Douglas J.; Ménard, Hervé; Knox, Andrew R.; Montecucco, Andrea; Siviter, Jonathan; Man, Elena A.; Li, Wen-guang; Paul, Manosh C.; Gao, Min; Sweet, Tracy; Freer, Robert; Azough, Feridoon; Baig, Hasan; Mallick, Tapas K.; Gregory, Duncan H. (2017)
Publisher: Wiley
Languages: English
Types: Article
Subjects: Synthesis, QD, Thermoelectrics, QD Chemistry, Nanomaterials, NDAS, n-type, Tin selenide
This work was financially supported by the EPSRC (EP/K022156/1). SRP and JWGB acknowledge the EPSRC for support (EP/N01717X/1). HFG and WZ acknowledge the EPSRC for the Equipment Grant to purchase Titan Themis 200 microscope (EP/L017008/1). An aqueous solution method is developed for the facile synthesis of Cl-containing SnSe nanoparticles in 10 g quantities per batch. The particle size and Cl concentration of the nanoparticles can be efficiently tuned as a function of reaction duration. Hot pressing produces n-type Cl-doped SnSe nanostructured compacts with thermoelectric power factors optimized via control of Cl dopant concentration. This approach, combining an energy-efficient solution synthesis with hot pressing, provides a simple, rapid, and low-cost route to high performance n-type SnSe thermoelectric materials. Postprint Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] a) X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, C. M. Lieber, Nature 2001, 409, 66; b) S. J. Oh, C. Uswachoke, T. S. Zhao, J. H. Choi, B. T. Diroll, C. B. Murray, C. R. Kagan, ACS Nano 2015, 9, 7536.
    • [2] D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, E. H. Sargent, Adv. Mater. 2012, 24, 6181.
    • [3] a) J.-S. Rhyee, K. Ahn, K. H. Lee, H. S. Ji, J.-H. Shim, Adv. Mater. 2011, 23, 2191; b) G. Han, Z.-G. Chen, J. Drennan, J. Zou, Small 2014, 10, 2747.
    • [4] a) L. D. Zhao, S. H. Lo, J. Q. He, H. Li, K. Biswas, J. Androulakis, C. I. Wu, T. P. Hogan, D. Y. Chung, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2011, 133, 20476; b) Q. Zhang, Y. C. Lan, S. L. Yang, F. Cao, M. L. Yao, C. Opeil, D. Broido, G. Chen, Z. F. Ren, Nano Energy 2013, 2, 1121; c) H. Wang, Y. Z. Pei, A. D. LaLonde, G. J. Snyder, Proc. Natl. Acad. Sci. USA 2012, 109, 9705; d) A. D. LaLonde, Y. Z. Pei, G. J. Snyder, Energy Environ. Sci. 2011, 4, 2090.
    • [5] H. Fang, Z. Luo, H. Yang, Y. Wu, Nano Lett. 2014, 14, 1153.
    • [6] J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. H. Wang, R. Debnath, D. K. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, E. H. Sargent, Nat. Mater. 2011, 10, 765.
    • [7] a) J. B. Zhang, J. B. Gao, E. M. Miller, J. M. Luther, M. C. Beard, ACS Nano 2014, 8, 614; b) Z. Zhang, C. Liu, X. J. Zhao, J. Phys. Chem. C 2015, 119, 5626.
    • [8] a) M. Ibáñez, R. J. Korkosz, Z. S. Luo, P. Riba, D. Cadavid, S. Ortega, A. Cabot, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 4046; b) D. James, X. Lu, A. C. Nguyen, D. Morelli, S. L. Brock, J. Phys. Chem. C 2015, 119, 4635.
    • [9] a) G. J. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123; b) W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem., Int. Ed. 2016, 55, 6826; c) G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
    • [10] a) L. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373; b) L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2015, 351, 141; c) K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 2016, 9, 454.
    • [11] a) E. K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 2016, 4, 1848; b) T.-R. Wei, G. Tan, X. Zhang, C.-F. Wu, J.-F. Li, V. P. Dravid, G. J. Snyder, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 8875; c) C. L. Chen, H. Wang, Y. Y. Chen, T. Day, G. J. Snyder, J. Mater. Chem. A 2014, 2, 11171; d) G. Han, S. R. Popuri, H. F. Greer, J. W. G. Bos, W. Z. Zhou, A. R. Knox, A. Montecucco, J. Siviter, E. A. Man, M. Macauley, D. J. Paul, W. G. Li, M. C. Paul, M. Gao, T. Sweet, R. Freer, F. Azough, H. Baig, N. Sellami, T. K. Mallick, D. H. Gregory, Angew. Chem., Int. Ed. 2016, 55, 6433; e) S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett, J. W. G. Bos, J. Mater. Chem. C 2016, 4, 1685; f) Y.-X. Chen, Z.-H. Ge, M. Yin, D. Feng, X.-Q. Huang, W. Zhao, J. He, Adv. Funct. Mater. 2016, 26, 6836.
    • [12] a) Q. Zhang, E. K. Chere, J. Y. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. F. Ren, Adv. Energy Mater. 2015, 5, 1500360; b) X. Wang, J. T. Xu, G. Q. Liu, Y. J. Fu, Z. Liu, X. J. Tan, H. Z. Shao, H. C. Jiang, T. Y. Tan, J. Jiang, Appl. Phys. Lett. 2016, 108, 083902.
    • [13] PDF-2 Release 2008, Joint Committee on Powder Diffraction Standards (JCPDS)-International Centre for Diffraction Data (ICDD), 2008.
    • [14] D. D. Vaughn, S. I. In, R. E. Schaak, ACS Nano 2011, 5, 8852.
    • [15] B. Z. Sun, Z. J. Ma, C. He, K. C. Wu, Phys. Chem. Chem. Phys. 2015, 17, 29844.
    • [16] S. I. Kim, S. Hwang, S. Y. Kim, W. J. Lee, D. W. Jung, K. S. Moon, H. J. Park, Y. J. Cho, Y. H. Cho, J. H. Kim, D. J. Yun, K. H. Lee, I. T. Han, K. Lee, Y. Sohn, Sci. Rep. 2016, 6, 19733.
    • [17] D. Feng, Z.-H. Ge, D. Wu, Y.-X. Chen, T. Wu, J. Li, J. He, Phys. Chem. Chem. Phys. 2016, 18, 31821.
    • [18] a) T. T. X. Vo, T. N. H. Le, Q. N. Pham, C. Byl, D. Dragoe, M. G. Barthes-Labrousse, D. Berardan, N. Dragoe, Phys. Status Solidi A 2015, 212, 2776; b) K. Rubenis, S. Populoh, P. Thiel, S. Yoon, U. Müller, J. Locs, J. Alloys Compd. 2017, 692, 515.
    • [19] D. Martinez-Escobar, M. Ramachandran, A. Sanchez-Juarez, J. S. N. Rios, Thin Solid Films 2013, 535, 390.
    • [20] S. Saha, A. Banik, K. Biswas, Chem. - Eur. J. 2016, 22, 15634.
    • [21] a) A. C. Larson, R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM 1994; b) B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok