LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Department of Automatic Control and Systems Engineering
Languages: English
Types: Book
Subjects:

Classified by OpenAIRE into

arxiv: Computer Science::Robotics
A neural ntwork is proposed for collision detection among multiple robotic arms sharing a common workspace. The structure of the neural network is a hybrid between Guassian Radial Basis Function (RBF) neural networks and Multi-layer perceptron back-propagation (BP) neural networks. This network is used to generate potential fields in the configuration space of the robotic arms. A path planning algorithm based on heuristics is presented. It is shown that this algorithm works better than the conventional potential field methods which carry out the planning in the operational space of robots. To show the effectiveness of the algorithm, simulation results are presented for a single 2-DOF robotic arm in presence of a static obstacle and then for two plannar manipulator sharing a common workspace. The algorithm is then extended to the case of 3-DOF arms moving in 3-D space.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article