LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Amercian Society for Microbiology
Journal: Applied and Environmental Microbiology
Languages: English
Types: Article
Subjects: Q1, Minireview
Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Gregory PH. 1961. The microbiology of the atmosphere. L. Hill, London, United Kingdom.
    • 2. Lacey ME, West JS. 2006. The air spora: a manual for catching and identifying airborne biological particles. Springer, Dordrecht, The Netherlands.
    • 3. Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, Jaenicke E. 2012. Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol 64:15598 -15656.
    • 4. Gregory PH, Hamilton ED, Sreeramulu T. 1955. Occurrence of alga Gloeocapsa in the air. Nature 176:1270. http://dx.doi.org/10.1038 /1761270a0.
    • 5. Kristiansen J. 1996. Dispersal of freshwater algae-a review. Hydrobiologia 336:151-157. http://dx.doi.org/10.1007/BF00010829.
    • 6. Schlichting HEJ. 1969. The importance of airborne algae and protozoa. J Air Pollut Control Assoc 19:946 -951. http://dx.doi.org/10.1080/00022470.1969 .10469362.
    • 7. Sharma NK, Rai AK, Singh S, Brown RM. 2007. Airborne algae: their present status and relevance. J Phycol 43:615- 627. http://dx.doi.org/10 .1111/j.1529-8817.2007.00373.x.
    • 8. Genitsaris S, Kormas KA, Moustaka-Gouni M. 2011. Airborne algae and cyanobacteria: occurrence and related health effects. Front Biosci 3:772-787. http://dx.doi.org/10.2741/e285.
    • 9. Marshall WA, Chalmers MO. 1997. Airborne dispersal of antarctic terrestrial algae and cyanobacteria. Ecography 20:585-594. http://dx.doi .org/10.1111/j.1600-0587.1997.tb00427.x.
    • 10. Finlay BJ. 2002. Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063. http://dx.doi.org/10.1126/science.1070710.
    • 11. Broady PA. 1979. Wind dispersal of terrestrial algae at Signy island, South Orkney islands. Br Antarct Surv Bull 48:99 -102.
    • 12. Rosas I, Roy-Ocotla G, Mosiño P. 1989. Meteorological effects on variation of airborne algae in Mexico. Int J Biometeorol 33:173-179. http://dx.doi.org/10.1007/BF01084602.
    • 13. Roy-Ocotla G, Carrera J. 1993. Aeroalgae: responses to some aerobiological questions. Grana 32:48 -56. http://dx.doi.org/10.1080 /00173139309436419.
    • 14. Tiberg E, Bergman B, Wictorin B, Willen T. 1984. Occurrence of microalgae in indoor and outdoor environments in Sweden, p 24 -29. In Nilsson S, Raj B (ed), Nordic aerobiology. Proceedings of the Fifth Nordic Symposium on Aerobiology, Abisko 1983. Almqvist and Wiksell International, Stockholm, Sweden.
    • 15. Barberousse H, Lombardo RJ, Tell G, Coute A. 2006. Factors involved in the colonisation of building facades by algae and cyanobacteria in France. Biofouling 22:69 -77. http://dx.doi.org/10.1080/08927010600564712.
    • 16. Genitsaris S, Moustaka-Gouni M, Kormas KA. 2011. Airborne microeukaryote colonists in experimental water containers: diversity, succession, life histories and established food webs. Aquat Microb Ecol 62: 139 -152. http://dx.doi.org/10.3354/ame01463.
    • 17. Ashok KJ, Gupta M. 1998. Role of airborne bioparticles with special reference to algal components, p 93-105. In Agarwal SK, Kaushik JP, Koul KK, Jain AK (ed), Perspectives in environment. SB Nangia, APH Publishing Corporation, New Delhi, India.
    • 18. Chu W-L, Tneh S-Y, Ambu S. 2013. A survey of airborne algae and cyanobacteria within the indoor environment of an office building in Kuala Lumpur, Malaysia. Grana 52:207-220. http://dx.doi.org/10.1080 /00173134.2013.789925.
    • 19. Schlichting HEJ. 1964. Meteorological conditions affecting the dispersal of airborne algae and protozoa. Lloydia 27:64 -78.
    • 20. Brown RM, Jr. 1971. Studies of Hawaiian fresh water and soil algae. 1. The atmospheric dispersal of algae and fern spores across the Island of Oahu, Hawaii, p 175-188. In Parker BC, Brown RM, Jr (ed), Contributions in phycology. Allen Press, Lawrence, KS.
    • 21. Rindi F, Allali HA, Lam DW, López-Bautista JM. 2009. An overview of the biodiversity and biogeography of terrestrial green algae, p 105-122. In Rescigno V, Maletta S (ed), Biodiversity hotspots. Nova Science Publishers, Hauppauge, NY.
    • 22. Van Overeem MA. 1937. On the green organisms occurring in the lower troposphere. Rec Trav Bot Neerl 34:389 - 439.
    • 23. Darwin C. 1846. An account of the fine dust which often falls on vessels in the Atlantic Ocean. Q J Geol Soc 2:26 -30.
    • 24. Elster J, Delmas RJ, Petit J-R, Rehakova K. 2007. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosci Discuss 4:1779 - 1813. http://dx.doi.org/10.5194/bgd-4-1779-2007.
    • 25. Sahu N, Tangutur AD. 2014. Airborne algae: overview of the current status and its implications on the environment. Aerobiologia 31:89 -97.
    • 26. Smith PE. 1973. The effects of some air pollutants and meteorological conditions on airborne algae and protozoa. J Air Pollut Control Assoc 23:876 - 880. http://dx.doi.org/10.1080/00022470.1973.10469858.
    • 27. Sassen K, Arnott WP, Starr DO, Mace GG, Wang Z, Poellot MR. 2003. Midlatitude cirrus clouds derived from hurricane Nora: a case study with implications for ice crystal nucleation and shape. J Atmos Sci 60:873- 891. http://dx.doi.org/10.1175/1520-0469(2003)060 0873:MCCDFH 2 .0.CO;2.
    • 28. Schlichting HEJ. 1974. Ejection of microalgae into the air via bursting bubbles. J Allergy Clin Immunol 53:185-188. http://dx.doi.org/10.1016 /0091-6749(74)90006-2.
    • 29. Mayol E, Jimenez MA, Herndl GJ, Duarte CM, Arrieta JM. 2014. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Front Microbiol 5:557. http://dx.doi.org/10 .3389/fmicb.2014.00557.
    • 30. Burrows SM, Hoose C, Pöschl U, Lawrence MG. 2013. Ice nuclei in marine air: biogenic particles or dust? Atmos Chem Phys 13:245-267. http://dx.doi.org/10.5194/acp-13-245-2013.
    • 31. Andreas EL, Edson JB, Monahan EC, Rouault MP, Smith SD. 1995. The spray contribution to net evaporation from the sea: a review of recent progress. Boundary Layer Meteorol 72:3-52. http://dx.doi.org/10 .1007/BF00712389.
    • 32. Brown RM, Jr, Larson DA, Bold HC. 1964. Airborne algae: their abundance and heterogeneity. Science 143:583-585. http://dx.doi.org/10 .1126/science.143.3606.583.
    • 33. Blanchard DC. 1989. The ejection of drops from the sea and their enrichment with bacteria and other materials: a review. Estuaries 12:127- 137. http://dx.doi.org/10.2307/1351816.
    • 34. Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM, Browse J, Burrows SM, Carslaw KS, Huffman JA, Judd C, Kilthau WP, Mason RH, McFiggans G, Miller LA, Nájera JJ, Polishchuk E, Rae S, Schiller CL, Si M, Temprado JV, Whale TF, Wong JPS, Wurl O, YakobiHancock JD, Abbatt JPD, Aller JY, Bertram AK, Knopf DA, Murray BJ. 2015. A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234 -238. http://dx.doi.org/10.1038/nature14986.
    • 35. Zweifel UL, Hagström Å, Holmfeldt K, Thyrhaug R, Geels C, Frohn LM, Skjøth CA, Karlson UG. 2012. High bacterial 16S rRNA gene diversity above the atmospheric boundary layer. Aerobiologia 28:481- 498. http://dx.doi.org/10.1007/s10453-012-9250-6.
    • 36. Baklanov A, Schlünzen K, Suppan P, Baldasano J, Brunner D, Aksoyoglu S, Carmichael G, Douros J, Flemming J, Forkel R, Galmarini S, Gauss M, Grell G, Hirtl M, Joffre S, Jorba O, Kaas E, Kaasik M, Kallos G, Kong X, Korsholm U, Kurganskiy A, Kushta J, Lohmann U, Mahura A, Manders-Groot A, Maurizi A, Moussiopoulos N, Rao ST, Savage N, Seigneur C, Sokhi RS, Solazzo E, Solomos S, Sørensen B, Tsegas G, Vignati E, Vogel B, Zhang Y. 2014. Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos Chem Phys 14:317-398. http://dx.doi.org/10.5194/acp-14-317 -2014.
    • 37. Carson JL, Brown RM, Jr. 1976. The correlation of soil algae, airborne algae, and fern spores with meteorological conditions on the island of Hawaii. Pac Sci 30:197-205.
    • 38. Brown JK, Hovmøller MS. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537-541. http://dx.doi.org/10.1126/science.1072678.
    • 39. Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I. 2012. Modelling the effect of size on the aerial dispersal of microorganisms. J Biogeogr 39:89 -97. http://dx.doi.org/10.1111/j.1365-2699.2011.02569.x.
    • 40. Hinds WC. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed. John Wiley & Sons, Inc, Toronto, Canada.
    • 41. Jacob DJ. 1999. Introduction to atmospheric chemistry. Princeton University Press, Princeton, NJ.
    • 42. Skjøth CA, Sommer J, Stach A, Smith M, Brandt J. 2007. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204 -1212. http://dx.doi.org/10.1111/j.1365-2222 .2007.02771.x.
    • 43. Campbell ID, McDonald K, Flannigan MD, Kringayark J. 1999. Longdistance transport of pollen into the Arctic. Nature 399:29 -30. http://dx .doi.org/10.1038/19891.
    • 44. Damschen EI, Baker DV, Bohrer G, Nathan R, Orrock JL, Turner JR, Brudvug LA, Haddad NM, Levey DJ, Tewksbury JJ. 2014. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci U S A 111:3484 -3489. http://dx.doi.org/10 .1073/pnas.1308968111.
    • 45. Felicisimo AM, Munoz J, Gonzalez-Solis J. 2008. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS One 3:e2928. http://dx.doi.org/10.1371/journal.pone.0002928.
    • 46. Sofiev M, Belmonte J, Gehrig R, Izquierdo R, Smith M, Dahl Å, Siljamo P. 2013. Airborne pollen transport, p 127-159. In Sofiev M, Bergmann K-C (ed), Allergenic pollen. Springer, Dordrecht, The Netherlands.
    • 47. Burrows SM, Butler T, Jöckel P, Tost H, Kerkweg A, Pöschl U, Lawrence MG. 2009. Bacteria in the global atmosphere-part 2: modeling of emissions and transport between different ecosystems. Atmos Chem Phys 9:9281-9297. http://dx.doi.org/10.5194/acp-9-9281-2009.
    • 48. Hara K, Zhang D. 2012. Bacterial abundance and viability in long-range transported dust. Atmos Environ 47:20 -25. http://dx.doi.org/10.1016/j .atmosenv.2011.11.050.
    • 49. DeMott PJ, Prenni AJ, Liu X, Kreidenweis SM, Petters MD, Twohy CH, Richardson MS, Eidhammer T, Rogers DC. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc Natl Acad Sci U S A 107:11217-11222. http://dx.doi.org/10.1073 /pnas.0910818107.
    • 50. Jaenicke R, Mattias-Maser S, Gruber S. 2007. Omnipresence of biological material in the atmosphere. Environ Chem 4:217-220. http://dx.doi .org/10.1071/EN07021.
    • 51. Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817-9854. http://dx.doi.org/10.5194/acp-12-9817-2012.
    • 52. Christner BC. 2012. Cloudy with a chance of microbes. Microbe 7:70 -75.
    • 53. Pummer BG, Bauer H, Bernardi J, Bleicher S, Grothe H. 2012. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos Chem Phys 12:2541-2550. http://dx.doi .org/10.5194/acp-12-2541-2012.
    • 54. Warren G, Wolber P. 1991. Molecular aspects of microbial ice nucleation. Mol Microbiol 5:239 -243. http://dx.doi.org/10.1111/j.1365-2958 .1991.tb02104.x.
    • 55. Šantl-Temkiv T, Sahyoun M, Finster K, Hartmann S, AugustinBauditz S, Stratmann F, Wex H, Clauss T, Nielsen NW, Sørensen JH, Korsholm US, Wick LY, Karlson UG. 2015. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos Environ 109:105-117. http://dx.doi.org/10.1016/j.atmosenv.2015.02.060.
    • 56. Govindarajan AG, Lindow SE. 1988. Size of bacterial ice-nucleation sites measured in-situ by radiation inactivation analysis. Proc Natl Acad Sci U S A 85:1334 -1338. http://dx.doi.org/10.1073/pnas.85.5.1334.
    • 57. Southworth MW, Wolber PK, Warren GJ. 1988. Nonlinear relationship between concentration and activity of a bacterial ice nucleation protein. J Biol Chem 263:15211-15216.
    • 58. Lagzian M, Latifi AM, Bassami MR, Mirzaei M. 2014. An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computation modeling. Biotechnol Lett 36:2043- 2051. http://dx.doi.org/10.1007/s10529-014-1568-4.
    • 59. Schnell RC, Vali G. 1972. Atmospheric ice nuclei from decomposing vegetation. Nature 236:163-165. http://dx.doi.org/10.1038/236163a0.
    • 60. Vali G, Christensen M, Fresh RW, Galyan EL, Maki LR, Schnell RC. 1976. Biogenic ice nuclei. Part II: bacterial sources. J Atmos Sci 33:1565- 1570.
    • 61. Morris C, Georgakapoulos D, Sands DC. 2004. Ice nucleation active bacteria and their potential role in precipitation. J Phys IV France 121: 87-103. http://dx.doi.org/10.1051/jp4:2004121004.
    • 62. Lindow SE, Arny DC, Upper CD. 1982. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol 70:1084 -1089. http://dx.doi.org /10.1104/pp.70.4.1084.
    • 63. Zachariassen KE, Kristiansen E. 2000. Ice nucleation and antinucleation in nature. Cryobiology 41:257-279. http://dx.doi.org/10.1006/cryo .2000.2289.
    • 64. D'Souza NA, Kawarasaki Y, Gantz JD, Lee RE, Jr, Beall BF, Shtarkman YM, Koçer ZA, Rogers SO, Wildschutte H, Bullerjahn GS, McKay RM. 2013. Diatom assemblages promote ice formation in large lakes. ISME J 7:1632-1640. http://dx.doi.org/10.1038/ismej.2013.49.
    • 65. Worland MR, Lukešova A. 2000. The effect of feeding on specific soil algae on the cold-hardiness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biol 23:766 -774. http://dx.doi.org/10.1007/s003000000150.
    • 66. Schnell RC, Vali G. 1975. Freezing nuclei in marine waters. Tellus 3:321-323.
    • 67. Schnell RC. 1977. Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: summer 1975. J Atmos Sci 34:1299 -1305. http://dx .doi.org/10.1175/1520-0469(1977)034 1299:INISFW 2.0.CO;2.
    • 68. Parker LV, Sullivan CW, Forest TW, Ackley SF. 1985. Ice nucleation activity of Antarctic marine microorganisms. Antarct J 20:126 -127.
    • 69. Fall R, Schnell RC. 1985. Association of an ice-nucleating pseudomonad with cultures of the marine dinoflagellate, Heterocapsa niei. J Mar Res 43:257-265. http://dx.doi.org/10.1357/002224085788437370.
    • 70. Morris CE, Kinkel LL, Xiao K, Prior P, Sands DC. 2007. Surprising niche for the plant pathogen Pseudomonas syringae. Infect Genet Evol 7:84 -92. http://dx.doi.org/10.1016/j.meegid.2006.05.002.
    • 71. Kvíderová J, Hájek J, Worland RM. 2003. The ice nucleation activity of extremophilic algae. Cryo Letters 34:137-148.
    • 72. Raymond JA. 2011. Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci U S A 108:E198. http://dx.doi.org/10.1073 /pnas.1106288108.
    • 73. Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G. 2011. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210 -219. http://dx .doi.org/10.1016/j.cryobiol.2011.08.006.
    • 74. Lee PA, de Mora SJ. 1999. Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role. J Phycol 35:8 -18. http://dx.doi.org/10.1046/j.1529-8817.1999 .3510008.x.
    • 75. Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC. 2012. Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. J Phycol 48:1494 -1509. http://dx.doi.org/10.1111/jpy.12004.
    • 76. Ewert M, Deming JW. 2013. Sea ice microorganisms: environmental constraints and extracellular responses. Biology 2:603- 628. http://dx.doi .org/10.3390/biology2020603.
    • 77. Le Bui TV. 2014. Cryopreservation, culture recovery and glucose induced programmed cell death in chlorophyte microalgae. Ph.D. thesis. University of Queensland, Brisbane, Australia.
    • 78. Knopf DA, Alpert PA, Wang B, Aller JY. 2011. Stimulation of ice nucleation by marine diatoms. Nat Geosci 4:88 -90. http://dx.doi.org/10 .1038/ngeo1037.
    • 79. Alpert PA, Aller JY, Knopf DA. 2011. Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos Chem Phys 11:5539 - 5555. http://dx.doi.org/10.5194/acp-11-5539-2011.
    • 80. Pruppacher HR, Klett JD. 2010. Microphysics of clouds and precipitation. Springer, New York, NY.
    • 81. Ronce O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231-253. http://dx .doi.org/10.1146/annurev.ecolsys.38.091206.095611.
    • 82. Tiberg E. 1989. Microalgae as allergens: with emphasis on the genus Chlorella Beijerinck. Ph.D. thesis. Uppsala University, Uppsala, Sweden.
    • 83. Round FE. 1984. The ecology of algae. Cambridge University Press, Cambridge, United Kingdom.
    • 84. Gupta S, Agrawal SC. 2008. Vegetative survival of some wall and soil blue-green algae under stress conditions. Folia Microbiol (Praha) 53: 3343-3350.
    • 85. Rengefors K, Logares R, Laybourn-Parry J, Gast RJ. 2015. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol 17:1510 -1519. http://dx.doi.org/10 .1111/1462-2920.12571.
    • 86. Teoh ML, Chu WL, Phang SM. 2010. Effect of temperature change on physiology and biochemistry of algae: a review. Malays J Sci 29:82-97.
    • 87. Jewson DH, Lowry SF, Bowen R. 2006. Co-existence and survival of diatoms on sand grains. Eur J Phycol 41:131-146. http://dx.doi.org/10 .1080/09670260600652903.
    • 88. Schueler S, Schlünzen K. 2006. Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179 -194. http://dx.doi.org/10.1007/s10666-006-9044-8.
    • 89. Fernandez-Mendez M, Wenzhofer F, Peeken I, Sorensen HL, Glud RN, Boetius A. 2014. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean. PLoS One 9:e107452. http: //dx.doi.org/10.1371/journal.pone.0107452.
    • 90. Bertrand M. 2010. Carotenoid biosynthesis in diatoms. Photosynth Res 106:89 -102. http://dx.doi.org/10.1007/s11120-010-9589-x.
    • 91. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222- 252. http://dx.doi.org/10.1128/MMBR.70.1.222-252.2006.
    • 92. Raymond JA. 2014. The ice-binding proteins of a snow algae, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles 18:987-994. http://dx.doi.org/10.1007/s00792-014-0668-3.
    • 93. Krembs C, Eicken H, Junge K, Deming JW. 2002. High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res 49:2163-2181. http://dx.doi.org/10.1016/S0967-0637(02)00122-X.
    • 94. International Commission on Radiological Protection. 1994. Human respiratory tract model for radiological protection. ICRP publication 66. Ann ICRP 24(1-3).
    • 95. Huffman JA, Prenni AJ, DeMott PJ, Pöhlker C, Mason RH, Robinson NH, Fröhlich-Nowoisky J, Tobo Y, Després VR, Garcia E, Gochis DJ, Harris E, Müller-Germann I, Ruzene C, Schmer B, Sinha B, Day DA, Andreae MO, Jimenez JL, Gallagher M, Kreidenweis SM, Bertram AK, Pöschl U. 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys 13:6151- 6164. http: //dx.doi.org/10.5194/acp-13-6151-2013.
    • 96. Freeman K. 2005. Seasick lungs. How airborne algal toxins trigger asthma symptoms. Environ Health Perspect 113:5A324.
    • 97. Fleming LE, Kirkpatrick B, Backer LC, Bean JA, Wanner A, Reich A, Zaias J, Cheng YS, Pierce R, Naar J, Abraham WM, Baden DG. 2007. Aerosolized red tide toxins (brevetoxins) and asthma. Chest 131:187- 194. http://dx.doi.org/10.1378/chest.06-1830.
    • 98. Bartra J, Mullol J, del Cuvillo A, Dávila I, Ferrer M, Jáuregui I, Montoro J, Sastre J, Valero A. 2007. Air pollution and allergens. J Investig Allergol Clin Immunol 17(Suppl 2):3- 8.
    • 99. D'Amato G, Baena-Cagnani CE, Cecchi L, Annesi-Maesano I, Nunes C, Ansotegui I, D'Amato M, Liccardi G, Sofia M, Canonica WG. 2013. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases. Multidiscip Respir Med 8:12. http://dx.doi.org/10.1186/2049-6958-8-12.
    • 100. Freystein K, Salisch M, Reisser W. 2008. Algal biofilms on tree bark to monitor airborne pollutants. Biologia 63:866 - 872.
    • 101. Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM. 2011. Isolation and characterization of Acanthamoeba spp. from airconditioners in Kuala Lumpur, Malaysia. Acta Trop 117:23-30. http://dx .doi.org/10.1016/j.actatropica.2010.09.004.
    • 102. Ng EHP, Chu WL, Ambu S. 2011. Occurrence of airborne algae within the township of Bukit Jalil in Kuala Lumpur, Malaysia. Grana 50:217- 227. http://dx.doi.org/10.1080/00173134.2011.602423.
    • 103. Sharma NK, Rai AK, Singh S. 2006. Meteorological factors affecting the diversity of airborne algae in an urban atmosphere. Ecography 29:766 - 772. http://dx.doi.org/10.1111/j.2006.0906-7590.04554.x.
    • 104. Hallegraeff GM, Anderson DM, Cembella AD. 2003. Manual on harmful marine microalgae. Intergovernmental Oceanographic Commission of UNESCO, Paris, France.
    • 105. Gallitelli M, Ungaro N, Addante LM, Procacci V, Silveri NG, Sabba C. 2005. Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate. JAMA 293:2599 -2600.
    • 106. Lebret K, Kritzberg ES, Rengefors K. 2013. Population genetic structure of a microalgal species under expansion. PLoS One 8:e82510. http://dx .doi.org/10.1371/journal.pone.0082510.
    • 107. De Meester L, Gomez A, Okamura B, Schwenk K. 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol 23:121-135. http://dx.doi.org/10.1016/S1146 -609X(02)01145-1.
    • 108. Anderson DM, Gilbert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704 -726. http://dx.doi.org/10.1007/BF02804901.
    • 109. Ibrahim AMM. 2007. Review of the impact of harmful algae blooms and toxins on the world economy and human health. Egypt J Aquat Res 22:210 -233.
    • 110. Mebs D. 1998. Occurrence and sequestration of toxins in food chains. Toxicon 36:1519 -1522. http://dx.doi.org/10.1016/S0041-0101(98) 00143-3.
    • 111. Garthwaite I. 2000. Keeping shellfish safe to eat: a brief review of shellfish toxins, and methods for their detection. Trends Food Sci Technol 11: 235-244. http://dx.doi.org/10.1016/S0924-2244(01)00006-1.
    • 112. Gaylarde PM, Gaylarde CC. 2000. Algae and cyanobacteria on painted buildings in Latin America. Int Biodeterior Biodegradation 46:93-97. http://dx.doi.org/10.1016/S0964-8305(00)00074-3.
    • 113. Gaylarde CC, Gaylarde PM. 2005. A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegradation 55:131-139. http://dx.doi .org/10.1016/j.ibiod.2004.10.001.
    • 114. John DM. 1988. Algal growths on buildings: a general review and methods of treatment. Biodeterior Abstr 2:81-102.
    • 115. Möhler O, DeMott PJ, Vali G, Levin Z. 2007. Microbiology and atmospheric processes: the role of biological particles in cloud physics. Biogeosciences 4:1059 -1071.
    • 116. DeMott P, Prenni AJ. 2010. New directions: need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos Environ 44:1944 -1945. http://dx.doi.org/10.1016/j.atmosenv.2010.02.032.
    • 117. Augustin-Bauditz S, Wex H, Kanter S, Ebert M, Stolz F, Prager A, Stratmann F. 2014. The immersion mode ice nucleation behavior of mineral dusts: a comparison of different pure and surface modified dusts. Geophys Res Lett 41:7375-7382. http://dx.doi.org/10.1002 /2014GL061317.
    • 118. Mace G, Marchand R, Zhang Q, Stephens G. 2007. Global hydrometeor occurrence as observed by CloudSat: initial observations from summer 2006. Geophys Res Lett 34:LO9808.
    • 119. Pöschl U, Martin ST, Sinha B, Chen Q, Gunthe SS, Huffman JA, Borrmann S, Farmer DK, Garland RM, Helas G, Jimenez JL, King SM, Manzi A, Mikhailov E, Pauliquevis T, Petters MD, Prenni AJ, Roldin P, Rose D, Schneider J, Su H, Zorn SR, Artaxo P, Andreae MO. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329:1513-1516. http://dx.doi.org/10.1126/science .1191056.
    • 120. Sporre MK, Swietlicki E, Glantz P, Kulmala M. 2014. A long-term satellite study of aerosol effects on convective clouds in Nordic background air. Atmos Chem Phys 14:2203-2178. http://dx.doi.org/10.5194 /acp-14-2203-2014.
    • 121. Reponen T, Willeke K, Grinshpun S, Nevalainen A. 2011. Biological particle sampling, p 549 -570. In Kulkarni P, Baron PA, Willeke K (ed), Aerosol measurement: principles, techniques, and applications, 3rd ed. John Wiley & Sons, Inc, New York, NY.
    • 122. Grinshpun SA, Willeke K, Ulevicius V, Juozaitis A, Terzieva S, Donnelly J, Stelma GN, Brenner KP. 1997. Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Sci Technol 26:326 -342. http://dx.doi.org/10.1080/02786829708965434.
    • 123. Jonsson P, Olofsson G, Tjärnhage T. 2014. Bioaerosol detection technologies. Springer, New York, NY.
    • 124. Chrisostoumou A, Moustaka-Gouni M, Sgardelis S, Lanaras T. 2009. Air-dispersed phytoplankton in a Mediterranean river-reservoir system (Aliakmon-Polyphytos, Greece). J Plankton Res 31:877- 884. http://dx .doi.org/10.1093/plankt/fbp038.
    • 125. Logares R. 2011. Population genetics: the next stop for microbial ecologists? Cent Eur J Biol 6:887- 892.
    • 126. Logares R, Lindstrom ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, Rengefors K, Tranvik L, Bertilsson S. 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7:937-948. http://dx.doi.org/10.1038/ismej .2012.168.
    • 127. Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M, Fiore-Donno AM, Gile GH, Holzmann M, Jahn R, Jirku M, Keeling PJ, Kostka M, Kudryavtsev A, Lara E, Lukes J, Mann DG, Mitchell EAD, Nitsche F, Romeralo M, Saunders GW, Simpson AGB, Smirnov AV, Spouge JL, Stern RF, Stoeck T, Zimmermann J, Schindel D, De Vargas C. 2012. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419. http://dx.doi.org/10.1371/journal .pbio.1001419.
    • 128. Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, Knight R, Fierer N. 2009. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:5121-5130. http://dx.doi .org/10.1128/AEM.00447-09.
    • 129. Zhu F, Massana R, Not F, Marie D, Vaulot D. 2005. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79 -92. http://dx.doi.org/10.1016/j .femsec.2004.10.006.
    • 130. Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, Sullivan M, Arendt D, Benzoni F, Claverie JM, Follows M, Gorsky G, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud EG, Sardet C, Sieracki ME, Speich S, Velayoudon D, Weissenbach J, Wincker P, Tara Oceans Consortium. 2011. A holistic approach to marine eco-systems biology. PLoS Biol 9:e1001177. http://dx.doi.org/10.1371/journal.pbio.1001177.
    • 131. Pozzer A, de Meij A, Pringle KJ, Tost H, Doering UM, van Aardenne J, Lelieveld J. 2012. Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmos Chem Phys 12:961-987. http://dx.doi.org/10.5194/acp-12-961 -2012.
    • 132. Vignati E, Facchini MC, Rinaldi M, Scannell C, Ceburnis D, Sciare J, Kanakidou M, Myriokefalitakis S, Dentener F, O'Dowd CD. 2010. Global scale emission and distribution of seaspray aerosol: sea-salt and organic enrichment. Atmos Environ 44:670 - 677. http://dx.doi.org/10 .1016/j.atmosenv.2009.11.013.
    • 133. Smith M, Skjøth CA, Myszkowska D, Uruska A, Malgorzata P, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, Brandt J. 2008. Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148:1402-1411. http://dx.doi.org/10.1016/j.agrformet.2008.04.005.
    • 134. Sadys M, Skjøth CA, Kennedy R. 2014. Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmos Environ 84:88 -99. http://dx.doi.org/10 .1016/j.atmosenv.2013.11.015.
    • 135. Burshtein N, Lang-Yona N, Rudich Y. 2011. Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean. Atmos Chem Phys 11:829 - 839. http://dx.doi.org/10.5194/acp-11-829 -2011.
    • 136. Skjøth CA, Sommer S, Frederiksen L, Karlson UG. 2012. Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys 12: 11107-11123. http://dx.doi.org/10.5194/acp-12-11107-2012.
    • 137. Šikoparija B, Skjøth CA, Kübler KA, Dahl A, Sommer J, Grewling L, Radišic´ P, Smith M. 2013. A mechanism for long distance transport of Ambrosia pollen from the Pannonian plain. Agric For Meteorol 180:112- 117. http://dx.doi.org/10.1016/j.agrformet.2013.05.014.
    • 138. Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen K, Hertel O, Frohn LM, Christensen JH. 2008. Copenhagen-a significant source of birch (Betula) pollen? Int J Biometeorol 52:453- 462. http://dx .doi.org/10.1007/s00484-007-0139-y.
    • 139. Belmonte J, Alarcon M, Avila A, Scialabba E, Pino D. 2008. Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675- 687. http://dx.doi.org/10.1007/s00484 -008-0160-9.
    • 140. Rousseau D-D, Duzer D, Cambon G, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R. 2003. Long distance transportation of pollen to Greenland. Geophys Res Lett 30:1765. http://dx.doi.org/10.1029 /2003GL017539.
    • 141. Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C. 2012. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol 56:669 - 680. http://dx.doi.org/10.1007 /s00484-011-0468-8.
    • 142. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A. 2006. Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392- 402. http://dx.doi.org/10.1007/s00484-006-0027-x.
    • 143. Skjøth CA, Ørby PV, Becker T, Geels C, Schlünssen V, Sigsgaard T, Nønløkke JH, Sommer J, Søgaars P, Hertel O. 2013. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 10:541-554. http://dx.doi.org/10.5194 /bg-10-541-2013.
    • 144. Orlanski I. 1975. A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527-530.
    • 145. Kasprzyk I, Myszkowska D, Grewling L, Stach A, Šikoparija B, Skjøth CA, Smith M. 2011. The occurrence of Ambrosia pollen: Rzeszów, Kraków and Poznan´ , Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633- 644. http://dx.doi.org/10.1007/s00484-010-0376-3.
    • 146. Olesen HR, Løfstrøm P, Berkowicz R, Jensen AB. 1992. An improved dispersion model for regulatory use-the OML model, p 29 -38. In van Dop H, Kallos G (ed), Air pollution modeling and its application IX. Plenum Press, New York, NY.
    • 147. US Environmental Protection Agency. 2003. AERMOD: latest features and evaluation results. Emissions Monitoring and Analysis Division, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC.
    • 148. Chamecki M, Meneveau C, Parlange MB. 2009. Large eddy simulation of pollen transport in the atmospheric boundary layer. Aerosol Sci 40: 241-255. http://dx.doi.org/10.1016/j.jaerosci.2008.11.004.
    • 149. Hernandez-Ceballos MA, Soares J, García-Mozo H, Sofiev M, Bolivar JP, Galán C. 2014. Analysis of atmospheric dispersion of olive pollen in southern Spain using SILAM and HYSPLIT models. Aerobiologia 30: 239 -255. http://dx.doi.org/10.1007/s10453-013-9324-0.
    • 150. Amato P, Ménager M, Sancelme M, Laj P, Mailhot G, Delort A-M. 2005. Microbial population in cloud water at the Puy de Dôme: implications for the chemistry of clouds. Atmos Environ 39:4143- 4153. http: //dx.doi.org/10.1016/j.atmosenv.2005.04.002.
    • 151. Sommer J, Smith M, Šikoparija B, Kasprzyk I, Myszkowska D, Grewling L, Skjøth CA. 2015. Risk of exposure to airborne Ambrosia pollen from local and distant sources-an example from Denmark. Ann Agric Environ Med 22:625- 631. http://dx.doi.org/10.5604/12321966.1185764.
    • 152. Geels C, Andersen HV, Skjøth CA, Christensen JH, Ellermann T, Løfstrøm P, Gyldenkaerne S, Brandt J, Hansen KM, Frohn LM, Hertel O. 2012. Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS. Biogeosciences 9:2625- 2647. http://dx.doi.org/10.5194/bg-9-2625-2012.
    • 153. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B. 2005. Fully coupled 'online' chemistry within the WRF model. Atmos Environ 39:6957- 6975. http://dx.doi.org/10.1016/j.atmosenv.2005 .04.027.
    • 154. Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, Stanelle T. 2009. The comprehensive model system COSMO-ARTradiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9:8661- 8680. http://dx.doi.org/10.5194/acp-9 -8661-2009.
    • 155. Rengefors K, Weyhenmeyer GA, Bloch I. 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18:65-73. http://dx.doi.org/10.1016/j.hal.2012.04.005.
    • 156. Intergovernmental Panel on Climate Change. 2007. Summary for policymakers, p 7-22. In Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (ed), Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
    • 157. Granéli W. 2012. Brownification of lakes, p 117-119. In Bengtsson L, Herschy RW, Fairbridge RW (ed), Encyclopedia of lakes and reservoirs. Encyclopedia of earth sciences series. Springer, Dordrecht, The Netherlands.
    • 158. Pöschl U. 2005. Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Edit 44:7520 -7540. http://dx .doi.org/10.1002/anie.200501122.
    • 159. Sharma NK, Singh S. 2010. Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian J Microbiol 50:468 - 473. http://dx.doi.org/10.1007/s12088-011-0146-x.
    • 160. Petterson B. 1940. Experimentelle untersuchungen uber die euanemochore verbreitung der sporenpflanzen. Acta Bot Fennica 25:1-103.
    • 161. Schlichting HEJ, Speziale BJ. 1977. Dispersal of algae and protozoa by Antarctic flying birds. Antarct J US 13:147-149.
    • 162. Skjøth CA, Hertel O, Ellermann T. 2002. Use of the ACDEP trajectory model in the Danish nation-wide background monitoring programme. Phys Chem Earth Part B 27:1469 -1477. http://dx.doi.org/10.1016/S1474 -7065(02)00149-3.
    • 163. Stach A, Smith M, Skjøth CA, Brandt J. 2007. Examining Ambrosia pollen episodes at Poznan´ (Poland) using back-trajectory analysis. Int J Biometeorol 51:275-286. http://dx.doi.org/10.1007/s00484-006-0068-1.
    • 164. Draxler RR, Hess GD. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust Meteorol Mag 47:295-308.
    • 165. Mahura AG, Korsholm US, Baklanov AA, Rasmussen A. 2007. Elevated birch pollen episodes in Denmark: contributions from remote sources. Aerobiologia 23:171-179. http://dx.doi.org/10.1007/s10453 -007-9061-3.
    • 166. Hernandez-Ceballos MA, Garcia-Mozo H, Adame JA, DominguezVilches E, Bolivar JP, De la Morena BA, Perez-Badia R, Galan C. 2011. Determination of potential sources of Quercus airborne pollen in Cordoba city (southern Spain) using back-trajectory analysis. Aerobiologia 27:261-276. http://dx.doi.org/10.1007/s10453-011-9195-1.
    • 167. Hernandez-Ceballos MA, Garcia-Mozo H, Adame JA, DominguezVilches E, De la Morena BA, Bolivar JP, Galan C. 2011. Synoptic and meteorological characterisation of olive pollen transport in Cordoba province (south-western Spain). Int J Biometeorol 55:17-34. http://dx .doi.org/10.1007/s00484-010-0306-4.
    • 168. Veriankaite˙ L, Siljamo P, Sofiev M, Šauliene˙ I, Kukkonen J. 2010. Modelling analysis of source regions of long-range transported birch pollen that influences allergenic seasons in Lithuania. Aerobiologia 26: 47- 62. http://dx.doi.org/10.1007/s10453-009-9142-6.
    • 169. Germano M, Piomelli U, Moin P, Cabot WH. 1991. A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760 -1765. http://dx .doi.org/10.1063/1.857955.
    • 170. Skamarock WC, Weisman ML. 2009. The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon Weather Rev 137:488 - 494. http://dx.doi.org/10.1175/2008MWR2583.1.
    • 171. Prtenjak M, Srnec L, Peternel R, Madžarevic´ V, Hrga I, Stjepanovic´ B. 2012. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia. Int J Biometeorol 56:1145-1158. http://dx.doi .org/10.1007/s00484-012-0520-3.
    • 172. British Atmospheric Data Centre. 2002. BADC trajectories. British Atmospheric Data Centre, Didcot, United Kingdom. http://cirrus.badc.rl .ac.uk/cgi-bin/trajectory/traj_form.
    • 173. Smith M, Emberlin J, Kress A. 2005. Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia 21:85-94. http://dx.doi.org/10.1007/s10453-005 -4178-8.
    • 174. Prank M, Chapman DS, Bullock JM, Belmonte J, Berger U, Dahl A, Jäger S, Kovtunenko I, Magyar D, Niemelä S, Rantio-Lehtimäki A, Rodinkova V, Sauliene I, Severova E, Sikoparija B, Sofiev M. 2013. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric For Meteorol 182-183:43-53.
    • 175. Schlünzen K. 1990. Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats. Beitr Phys Atmos 63:243-256.
    • 176. Christensen J. 1997. The Danish eulerian hemispheric model-a threedimensional air pollution model used for the Arctic. Atmos Environ 31:4169 - 4191.
    • 177. Brandt J, Silver J, Frohn LM, Geels C, Gross A, Hansen AB, Hansen KM, Hedegaard GB, Skjøth CA, Villadsen H, Zare A, Christensen JH. 2012. An integrated model study for Europe and North America using the Danish eulerian hemispheric model with focus on intercontinental transport of air pollution. Atmos Environ 53:156 -176. http://dx.doi.org /10.1016/j.atmosenv.2012.01.011.
    • 178. Vogel B, Fiedler F, Vogel H. 1995. Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Württemberg on ozone concentrations during episodes of high air temperatures. J Geophys Res 100:22907-22928.
    • 179. Helbig N, Vogel B, Vogel H, Fiedler F. 2004. Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 20:3-19. http://dx .doi.org/10.1023/B:AERO.0000022984.51588.30.
    • 180. Zink K, Pauling A, Rotach MW, Vogel H, Kaufmannt P, Clot B. 2013. EMPOL 1.0: a new parameterization of pollen emission in numerical weather prediction models. Geosci Model Dev 6:1961-1975. http://dx .doi.org/10.5194/gmd-6-1961-2013.
    • 181. Byun D, Ching J. 1999. Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system. EPA/600/R-99/ 030. US Environmental Protection Agency, Washington, DC.
    • 182. Efstathiou C, Isukapalli S, Georgopoulos P. 2011. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos Environ 45:2260 -2276. http://dx.doi.org/10 .1016/j.atmosenv.2010.12.008.
    • 183. Zhang R, Duhl T, Salam MT, House JM, Flagan RC, Avol EL, Gilliland FD, Guenther A, Chung SH, Lamb BK, VanReken TM. 2014. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease. Biogeosciences 11:1461-1478. http://dx.doi.org/10.5194 /bg-11-1461-2014.
    • 184. Kallos G. 1998. Regional/mesoscale models, p 177-196. In Fenger J, Hertel O, Palmgren F (ed), Urban air pollution-European aspects. Springer, Dordrecht, The Netherlands.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | ASTERISK

Cite this article