LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QC, QD
a-tricalcium phosphate (a-TCP, Ca3(PO4)2) demonstrates both bioactive and resorbable\ud characteristics. Substitution of SiO4\ud 4- for PO4\ud 3- in a-TCP (Si-a-TCP) is\ud found to stabilize the structure at lower temperatures and improve mechanical (and\ud possibly bioactive) properties. The mechanism of electroneutrality in the Si-a-TCP\ud structure is not fully understood, though is thought to take place through the creation\ud of O2- vacancies or through excess Ca2+. This study addresses some structural properties\ud of a-TCP using 31P MAS NMR at intermediate B0 fields (11.7 T) and 43Ca DOR\ud NMR at multiple fields (20.0 T, 14.1 T, 11.7 T), and via correlation of the measured\ud 31P and 43Ca isotropic chemical shifts (Oiso) against calculated values obtained with\ud GIPAW DFT methods using the CASTEP code. These results show that the structure\ud has high short range order and clearly support the monoclinic P21/a (12 P site/18 Ca\ud site) model.\ud In contrast, solid state 31P MAS and 43Ca DOR NMR studies of Si-a-TCP demonstrate\ud that significant disorder broadening is characteristic of these data, however the\ud corresponding 29Si MAS NMR data affords reasonably resolved resonances, a low intensity\ud Q2 resonance at 0iso {84.5 ppm, and multiple resonances in the range 0iso -\ud {70 -{75 ppm, despite this shift range normally associated with Q0 speciation, 29Si\ud refocused-INADEQUATE data shows that Q1 resonances can also exist in this region.\ud 31P-29Si HETCOR data from these systems suggests that, despite the intrinsic disorder,\ud explicit PO43- framework species can be associated with the different Q0/Q1 Si\ud species, and while there is some dispersion of the silicon throughout the structure it\ud is predominantly associated with a small number of P sites. DFT calculations for the\ud Si-a-TCP system suggest that the more favourable mechanism for charge balance is\ud Ca2+ excess, despite this, the 29Si NMR data is in greater agreement with the DFT calculations\ud for the O2- mechanism, whereby two adjoining cation-anion-columns in the\ud structure are bridged together by a Q1 unit , 29Si NMR data also suggests the existence\ud of Ca2SiO4 and Ca3Si3O9 existing as solid solutions within the a-TCP structure.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    • 2 Background Theory 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 A Simple Classical Description of NMR . . . . . . . . . . . . . . . . . . 8 2.3 Behaviour of the Bulk Magnetism Over Time . . . . . . . . . . . . . . 13 2.4 The Quantum Mechanical Approach . . . . . . . . . . . . . . . . . . . 17 2.5 Internal Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.1 The Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.2 The Dipolar Interaction . . . . . . . . . . . . . . . . . . . . . . 27 2.5.3 Quadrupole Coupling . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.4 J-coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
    • [1] Mathew, M. Schroder, L.W., Dickens, B., Brown, W.E. The crystal structure of -Ca3(PO4)2. Acta crystallographica, B33:1325{1333, 1976.
    • [2] Ratner, B.D., Ho man, A.S., Schoen, A.S., Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, 1996.
    • [3] Bhat, S.V. Biomaterials. Kluwer, 2002.
    • [4] Williams, D.F. De nitions in biomaterials: Proceedings of a consensus conference of the european society of biomaterials. 4, 1986.
    • [5] Nicholson, J.W. The Chemistry of Medical and Dental Materials. The Royal Society of Chemistry, 2002.
    • [6] Habibovic, P., Barralet, J.E. Bioinorganics and biomaterials: Bone repair. Acta Biomaterialia, 7:3013{3026, 2001.
    • [7] Gregoire, M., Orly, I., Menanteau, J. The in uence of calcium phosphate biomaterials on human bone cell activities: An in vitro approach. Journal of Biomaterial Research, 24:165{177, 1990.
    • [8] Bagambisa, F.-B., Joos, U., Schilli, W. The interaction of osteogenic cells with hydroxylapatite implant materials in vitro and in vivo. International Journal of Oral Maxillofac Implants, 5:217{226, 1990.
    • [9] Ravaglioli, A, Krajewski, A. Bioceramics. Chapman and Hall, 1992.
    • [10] Mow, V.C, Huiskes, R. Basic Orthopedic Bioceramics and Mechano-Biology. Lippincott Williams Wilkins, 2005.
    • [11] Hench, L.L., Wilson, J. An Introduction to Bioceramics. World Sienti c, 1993.
    • [12] Gibson, I.R., Bon eld, W.J. Preperation and characterization of magnesium/carbonate co-substituted hydroxyapatites. Journal of Materials Science: Materials in Medicine, 13:685{693, 2002.
    • [13] Martin, R.B., Burr, D.B., Sharkey, N.A. Skeletal Tissue Mechanics. Springer, 1998.
    • [14] Par tt, A.M. Bone and plasma calcium homeostasis. Bone, 8:S1{8, 1987.
    • [15] Miller, S.C., Jee, W.S.S. Bone lining cells. in bone: Bone metabolism and mineralization. Bone, 4:1{19, 1992.
    • [16] Nery E.B., LeGeros, R.Z., Lynch, K.L., Lee, K. Tissue response to biphasic calcium phosphate ceramic with di erent ratios of HA/beta TCP in periodontal osseous defects. Jounal of Periodontol, 63:729{735, 1992.
    • [17] S. Carrodeguas, R.G., De Aza. -Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 7:3536{3546, 2011.
    • [18] Vallet-Regi, M., Gonzalez-Calbet, J.-M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 32:1{31, 2004.
    • [19] Christel, P., Meunier, A., Dorlot, J.-M., Crolet, J.-M., Witvoet, J., Sedel, L., Boutin, P. Biomechanical compatibility and design of ceramic implants for orthopedic surgery. Annals of the New York Academy of Sciences, 523:234{256, 1988.
    • [20] Hastings, G.W., Williams, D. Mechanical properties of Bioamterials. Wiley, 1980.
    • [21] Sudarsana, K., Young, R.A. Signi cant precision in crystal structural details: Holly springs hydroxyapatite. Acta crystallographica, B25:1534{1543, 1969.
    • [22] Stephen, J.A., Skakle, J.M.S., Gibson, I.R. Synthesis of novel high silicatesubstituted hydroxyapatite by co-substitution mechanisms. Key Engineering Materials (Bioceramics), 330-332:87{90, 2006.
    • [23] Langsta , S., Sayer, M., Smith, T.J.N., Pugh, S.M., Hesp, S.A.M., Thompson, W.T. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preperation and material characterization. Biomaterials, 20:1727{1742, 1999.
    • [24] Patel, N., Best, S.M., Bon eld, W., Gibson, I.R., Hing, K.A., Damien, E., Revell, P.A. A comparitive study on the in vivo behaviour of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of Materials Science: Materials in Medicine, 13:1199{1206, 2002.
    • [25] Vallet-Regi, M., Arcos, D.,. Silicon substituted hydroxyapatites: A method to upgrade calcium phosphate based implants. Journal of Materials Chemistry, 15:1509{1516, 2005.
    • [26] Zou, S., Huang, J., Best, S., Bon eld, W. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using raman and XRD. Journal of Materials Science: Materials in Medicine, 16:1143{1148, 2005.
    • [27] Tang, X.L., Xiao, X.F., Liu, R.F. Structural characterization of siliconsubstituted hydroxyapatite synthesized by a hydrothermal method. Materials Letters, 59:3841 { 3846, 2005.
    • [28] Vallet-Regi, M., Rodriguez-Carvajala, J., Arcos, D. The e ect of the silicon incorporation on the hydroxylapatite structure: A neutron di raction study. Solid State Sciences, 6:987{994, 2004.
    • [29] Gomes, S., Nedelec, J.-M., Jallot, E., Sheptyakov, D., Renaudin, G. Silicon location in silicate-substituted calcium phosphate ceramics determined by neutron di raction. Crystal Growth and Design, 11:4017{4026, 2011.
    • [30] Yin, X., Stott, M.J. Theoretical insights into bone grafting silicon-stabilized {tricalcium phosphate. The Journal of Chemical Physics, 122:024709{1, 2005.
    • [31] Langsta , S., Sayer, M., Smith, T.J.N., Pugh, S.M. Resorbable bioceramics based on stabilized calcium phosphates. Part II: Evaluation of biological response. Biomaterials, 22:135{150, 2001.
    • [33] Jager, C., Welzel, T., Meyer-Zaika, W., Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magnetic Resonance in Chemistry, 44:573{580, 2006.
    • [34] Bohner, M., Lemaitre, J., Legrand, A.P., d'Espinose dela Caillerie, J.-B., Belgrand, P. Synthesis, X-ray di raction and solid-state 31P magic angle spinning NMR study of -tricalcium othophosphate. Journal of Materials Science: Materials in Medicine, 7:457{463, 1996.
    • [35] Kim, S.-R., Riu, D.H., Lee, Y.J., Kim., Y.H. Synthesis and characterization of silicon substituted hydroxyapatite. Key Engineering Materials, 218-220:85{88, 2002.
    • [36] Gasqueres, G., Bonhomme, C., Maquet, J., Babonneau, F., Hayakawa, S., Kanaya, T., Osaka, A. Revisiting silicate substituted hydroxyapatite by solid state NMR. Magnetic Resonance in Chemistry, 46:342{346, 2008.
    • [37] Rawal, A., Wei, X., Akinc, M., Schmidt-Rohr, K. Disperssion of silicate in tricalcium phosphate elucidated by solid-state NMR. Chemistry of Materials, 20:2583{2591, 2008.
    • [38] Gillespie, P., Wu, G., Sayer, M., Stott, M.J. Si complexes in calcium phosphate biomaterials. Journal of Materials Science: Materials in Medicine, 21:99{108, 2010.
    • [39] Laurencin, D., Wong, A., Dupree, R., Smith, M.E. Natural abundance 43Ca solid state NMR characterisation of hydroxyapatite: identi cation of the two calcium sites. Magnetic Resonance in Chemistry, 46:347{350, 2007.
    • [40] Laurencin, D., Wong, A., Hanna, J.V., Dupree, R., Smith, M.E. A high resoloution 43Ca solid state nmr study of the calcium sites of hydroxyapatite. Journal of the American Chemical Society, 130:2412{2413, 2008.
    • [41] Gervais, C., Laurencin, D., Wong, A., Pourpoint, F., Howes, A.P., Pike, K.J., Dupree, R., Mauri, F., Bonhomme, C., Smith, M.E. New perspectives on calcium environments in inorganic materials contianing calcium-oxygen bonds: a combine computational-experimental 43Ca approch. Chemical Physics Letters, 464:42{48, 2008.
    • [42] Pourpoint, F., Diogo, T.C., Gervais, C., Bonhomme, C., Fayon, F., Dalicieux, S.L., Gennero, I., Salles, J.-P., Howes, A.P., Dupree, R., Hanna, J.V., Smith, M.E., Mauri, F., Guerrero, G., Mutin, P.H., Laurencin, D. High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research, 26:2355{2368, 2011.
    • [43] Abragam, A. Principles of Nuclear Magnetism. Oxford, 1962.
    • [44] Levit, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley, 2001.
    • [45] Duer, M.J. Introduction to Solid-State NMR Spectroscopy. Blackwell, 2004.
    • [46] Harris, R.K. Nuclear Magnetic Resonance Spectroscopy. Pitman, 1983.
    • [47] Kittel, C. Introduction to Solid State Physics - 7th ed. Wiley, 1996.
    • [48] Stejskal, E.O., Memory, J.D. High Resolution NMR in the Solid State. Oxford, 1994.
    • [49] Gerstein, B.C., Dybowski, C.R. Transient Techniques in NMR of Solids: An Introduction to Theory and Practice. Academic Press, 1985.
    • [50] Fukushima, E., Roeder, S.B.W. Experimental Pulse NMR: A Nuts and Bolts Approach. Addison-Wesley, 1981.
    • [51] MacKenzie, K.J.D., Smith, M.E. Multinuclear Solid-State NMR of Inorganic Materials. Pergamon, 2002.
    • [53] Hill, H.D.W. Spectrometers: A general Overview: Encyclopedia of Magnetic Resonance. John Wiley and Sons Ltd., 2007.
    • [54] Doty, F.D. Probes for Instrumentation: Encyclopedia of Magnetic Resonance. John Wiley and sons Ltd., 2007.
    • [55] Hill, H.D.W. Probes for High Resoloution: Encyclopedia of Magnetic Resonance. John Wiley and sons Ltd., 2007.
    • [56] McKay, R.A. Probes for Special purposes: Encyclopedia of Magnetic Resonance. John Wiley and sons Ltd., 2007.
    • [57] Samoson, A., Lippmaa, E., Pines, A. High-resolution solid state NMR averaging of 2nd-order e ects by means of a double rotor. Molecular Physics, 65:1013{1018, 1988.
    • [65] Granwehr, J. Multilicative or t1 noise in NMR spectroscopy. Applied Magnetic Resonance, 32:113{156, 2007.
    • [67] Lee, Y.K, Kurur, M., Helmle, M, Johannessen, O.G., Nielsen, N.C, Levitt, M.H. E cient dipolar recoupling in the nmr of rotating solids a sevenfold symmetric radiofrequency pulse sequence. Chemical Physics Letters, 242:304{309, 1995.
    • [68] Lopez, J.J, Kaiser, C., Shastri, S, Glaubitz, C. Double quantum ltering homonuclear MAS NMR correlation spectra: A tool for membrane protien studies. Journal of Biomolecular NMR, 41:97{104, 2008.
    • [69] Carravetta, M., Eden, M., Johannessen, O.G., Luthman, H., Verdegem, P.J.E., Lugtenburg, J., Sebald, A., Levitt, M.H. Estimation of carbon-carbon bond lengths and medium-range internuclear distances by solid-state nuclear magnetic resonance. Journal of the American Chemical Society, 123:10628{10638, 2001.
    • [70] Carravetta, M., Eden, M., Zhao, X., Brinkmana, A., Levitt, M.H. Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chemical Physics Letters, 321:205{215, 2000.
    • [71] Fayon, F., Massiot. D., Levitt, M.H., Titman, J.J., Gregory, D.H., Duma, L., Emsley, L., Brown, S.P. Through space contributions to two dimensional double quantum J correlation NMR spectra of magic angle spinnng solids. The Journal of Chemical Physics, 122:194313, 2005.
    • [72] Bax, A., Freeman. R., Frenkiel, T.A. An NMR technique for tracing out the carbon skeleton of an organic molecule. Journal of the American Chemical Society, 103:2102{2104, 1981.
    • [73] Lesage, A., Bardet. M., Emsley, L. Through bond carbon-carbon connectivities in disordered solids by NMR. Journal of the American Chemical Society, 121:10987{ 10993, 1999.
    • [74] Pines, A., Gibby, M.G., Waugh, J.S. Proton enhanced NMR of dilute spins in solids. Journal of Chemical Physics, 59:569{590, 1973.
    • [75] Caravatti, P., Bodenhausen, G., Ernst, R.R. Hetronuclear solid state correlation spectroscopy. Chemical Phyics Letters, 89:363{367, 1982.
    • [76] Hartmann, S.R., Hahn, E.L. Nuclear double resonance in the rotating frame. Journal of Chemical Physics, 128:2042{2053, 1962.
    • [77] Peersen, O.B., Wu. X., Kustanovich, I., Smith, S.O. Variable-amplitude crosspolarisation MAS NMR. Journal of Magnetic Resoance, 104:334{339, 1993.
    • [78] L.L. Hench. Bioceramics. Journal of the American Ceramic Society, 81:1705{ 1728, 1998.
    • [79] M. Jarcho. Calcium-phosphate ceramics as hard tissue prosthetics. Clinical Othopaedics and Related Research, 157:259{278, 1981.
    • [80] Cook, S.D., Thomas, K.A., Haddad, R.J., Jarcho, M., Kay, J. Hydroxyapatitecoated titanium for orthopedic implant applications. Clinical Othopaedics and Related Research, 232:225{243, 1988.
    • [81] Dickens, B., Schroder, L.W., Brown, W.E. The crystal structure of pure - Ca3(PO4)2. Journal of Solid State Chemistry, 10:232{248, 1974.
    • [86] Sayer, M., Stratilatov, A.D., Reid, J., Calderin, L., Stott, M.J., Yin, X., MacKenzie, M., Smith, T.J.N., Hendry, J.A, Langsta , S.D. Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials, 24:369{382, 2003.
    • [87] Yin, X., Stott, M.J. and -Tricalcium phosphate: A density functional study. Physical Review B, 68:205205, 2003.
    • [88] Mackay, A.L. A preliminary examination of the structure of -Ca3(PO4)2. Acta Crystallographica, 6:743, 1953.
    • [89] Gossner, B. Glaserite. Neues Jahrbuch fr Mineralogie, 57A:89{116, 1928.
    • [90] Massie, I., Skakle, J.M.S., Gibson, I.R. Synthesis and phase stability of silicate-substituted alpha-tricalcium phosphate. Key Engineering Materials, 361{ 3631:67{70, 2008.
    • [91] Yashima, M., Kawaike, Y., Tanaka, M. Determination of precise unit-cell paramaters of the -tricalcium phosphate phase Ca3(PO4)2 through high-resolution synchrotron powder di raction. Journal of the American Ceramic Society, 90:272{274, 2007.
    • [92] Accelrys Inc., 10188 Telesis Court, Suite 100 San Diego, CA 92121, USA.
    • [93] Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., Payne, M.C. First principles methods using CASTEP. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 220:567{570, 2005.
    • [94] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., and Pederson, M.R., Singh, D.J., Fiolhais, C. Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation. Physical Review b, 46:6671{6687, 1992.
    • [95] Profeta, M., Benoit, M., Mauri, F., Pickard, C.J. First-principles calculation of the 17O NMR parameters in Ca oxide and Ca aluminosilicates: the partially covalent nature of the Cao bond, a challenge for Density Functional Theory. Journal of the American Chemical Society, 126:12628{12635, 2004.
    • [98] Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z., Hoasten, G. Modelling one and two dimensional solidstate nmr spectra. Magnetic Resonance in Chemistry, 40:70{76, 2002.
    • [99] Turner, G.L., Smith, K.A., Kirkpatrick, R.J., Old eld, E. Structure and cation e ect on phosphorous{31 NMR chemical shifts and chemical{shift anisotropies of orthophosphates. Journal of Magnetic Resoance, 70:408{415, 1986.
    • [100] Cheetham, A.K., Clayden, N.J., Dobson, C.M., Jakeman, J.B. Correlations between 31P N.M.R chemical shifts and structural paramaters in crystalline inorganic phosphates. Journal of the American Chemical Society Communications, 3:195{197, 1986.
    • [101] Bohner, M. Silicon-substituted calcium phosphates { a critical view. Biomaterials, 30:6403{6406, 2009.
    • [102] Old eld, E., Kinsey, R.A., Smith, K.A., Nichols, J.A., Kirkpatrick, R.J. High resolution NMR of inorganic solids, in uence of magnetic centers on magic{angle sample spinning lineshapes in some natural aluminosilicates. Journal of Magnetic Resonace, 51:325{329, 1982.
    • [103] Johnston, J.C., Luliucci, R.J., Facelli, J.C., Fitzgerald, G., Mueller, K.T. Intermolecular shielding contributions studied by modeling the 13c chemical-shift tensors of inorganic single crystals with plane waves. The Journal of Chemical Physics, 131:144503, 2009.
    • [105] Obadia, L., Deniard, P., Alonso, B., Rouillon, T., Jobic, S., Guicheux, J., Julien, M., Massiot, D., Bujoli, B., Bouler, J. E ect of sodium doping in -Tricalcium phosphate on its structure and properties. Journal of the American Ceramic Society, 18:1425{1433, 2006.
    • [106] Enderle, R., Gotz-Neunhoe er, F., Gobbels, M., Muller, F.A., Greil, P. In uence of magnesium doping on the phase transformation temperature of -TCP ceramics by Rietveld re nement. Biomaterials, 26:3379{3384, 2005.
    • [107] Duncan, J. Silicon-Containing -Tricalcium Phosphate. PhD thesis, University of Aberdeen, 2012.
    • [108] Tilley, C.E. Tricalcium disilicate (rankinite), a new mineral from Scawt Hill, Co. Antrim. Mineral Magazine, 28:190{196, 1942.
    • [115] Dupree, R., Lewis, M.H., Leng Ward, G., Williams, D.S. Co-ordination of Si atoms in silicon-oxynitrides determined by magic-angle spinning NMR. Journal of Materials Science Letters, 4:393{395, 1985.
    • [117] Lippmaa, E., Magi, M., Samoson, A., Tarmak, M., Engelhardt, G. Investigation of the structure of zeolites by solid-state high-resoloution 29si nmr spectroscopy. Journal of the American Chemical Society, 103:4992{4996, 1981.
    • [118] Magi, M., Lippmaa, E., Samoson, A., Engelhardt, G., Grimmer, A.-R. Solidstate high-resolution silicon-29 chemical shifts in silicates. Journal of Physical Chemistry, 88:1518{1522, 1984.
    • [119] De Aza, P.N., Guitian, F. Phase diagram of wollastonite-tricalcium phosphate. Journal of the American Ceramic Society, 78:1653{1656, 1995.
    • [120] Gomes, S., Renaudin, G., Jallot, E., Bonhomme, C., Babonneau, F., Nedelec, J.-M. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomaterialia, 6:3264{3274, 2010.
    • [134] Zanni, H., Rassem-Bertolo, R., Massie, S., Fernandez, L, Nieto, P., Breson, B. A spectroscopic NMR investigation of the calcium silicate hydrates present in cement and concrete. Magnetic Resonance Imaging, 14:827{831, 1996.
    • [150] Angeli, F., Gaillard, M., Jollivet, P., Charpentier, T. Contribution of 43Ca MAS NMR for probing the structural con guration of calcium glass. Chemical Physics Letters, 440:324{328, 2007.
    • [151] Wong, A., Howes, A.P., Yates, J.R., Watts, A., Anupo^ld, T., Past, J., Samoson, A., Dupree, R., Smith, M.E. Ultra-high rsoloution 17O solid-state NMR spectroscopy of biomolecules: A comprehensive spectral analysis of monosodium Lglutamate-monohydrate. Physical chemistry Chemical Physics, 13:12213{12224, 2011.
    • [152] Hung, I., Howes, A.P., Parkinson, B.G., Anupo^ld, T., Samoson, A., Brown, S.P., Harrison, P.F., Holland, D., Dupree, R. Determination of the bond-angle distribution in vitreous B2O3 by 11B double rotation(DOR) nmr spectroscopy. Journal of Solid State Chemistry, 182:2402{2408, 2009.
    • [153] Gervais, C., Dupree, R., Pike, K.J., Bonhomme, C., Profeta, M., Pickard, C.J., Mauri, F. Combined rst-principle computaitional and experimental mutinuclear solid state nmr investigation of amino acids. Journal of Physical Chemistry, 109A:6960{6969, 2005.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    43caProtein Data Bank

Share - Bookmark

Cite this article