LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer New York LLC
Languages: English
Types: Article
Subjects: QA

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
Sets of appropriately normalized eta quotients, that we call level n Weber functions, are defined, and certain identities generalizing Weber function identities are proved for these functions. Schlafli type modular equations are explicitly obtained for Generalized Weber Functions associated with a Fricke group Γº(n)+, for n = 2, 3, 5, 7, 11, 13 and 17.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] A.O.L. Atkin, F. Morain Elliptic curves and primality proving Math. Comp. 61, 203, pp. 29-68, July 1993.
    • [2] B.C. Berndt Ramanujan's Notebooks Part V, Springer-Verlag, New York, 1998.
    • [3] B.C.Berndt, S.Bhargava, F.G.Garvan Ramanujan's theories of elliptic functions to alternative bases Trans. A.M.S. Vol. 347, No. 11, pp. 4163-4244, Nov. 1995.
    • [4] B.C.Berndt, H.H.Chan, S.-Y.Kang, L.-C.Zhang A certain quotient of eta-functions found in Ramanujan's lost notebook Pacific J. Math. 202, pp. 267-304, 2002.
    • [5] H.H.Chan, W.-C. Liaw On Russel-type modular equations Canad. J. Math. 52, pp. 31-46, 2000.
    • [6] H.H.Chan, W.-C. Liaw Cubic modular equations and new Ramanujan-type series for 1/π Pacific J. Math. 192, pp. 219-238, 2000
    • [7] H.H.Chan, A. Gee, V.Tan Cubic singular moduli, Ramanujan's class invariants λ n and the explicit Shimura reciprocity law Pacific J. Math. 208, pp. 23-37, 2003.
    • [8] H.H.Chan, W.-C. Liaw, V.Tan Ramanujan's class invariants λ n and a new class of series for 1/π J. London Math. Soc. (2) 64, pp. 93-106, 2001.
    • [9] R. Chapman, W.B. Hart Evaluation of the Dedekind eta function Preprint.
    • [10] R. J. Evans Theta function identities J. Math. Anal. Appl. 147, pp. 97-121, 1990.
    • [11] A. Gee Class Invariants from Dedekind's Eta Function Thesis, Thomas Stieltjes Institute for Mathematics, 2001
    • [12] A. Gee, P. Stevenhagen Generating class fields using Shimura reciprocity LNCS 1423 (ANTS-III), pp. 441-453, 1998.
    • [13] W. B. Hart Explicit evaluation of the Dedekind eta function PhD. Thesis, 2004 , Macquarie University, Sydney.
    • [14] PARI-GP. See http://pari.math.u-bordeaux.fr.
    • [15] B. Schoeneberg Elliptic Modular Functions Die Grund. der Math. Wiss. 203. SpringerVerlag 1974.
    • [16] G.N. Watson U¨ber die Schalfl¨ishen Modulargleichungen J. Reine Angew. Math. 169, pp. 238-251, 1933.
    • [17] H. Weber Lehrbuch der Algebra Dritter Band, Third Edition, Chelsea N.Y.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article