Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Al-Ameri, Talib; Georgiev, Vihar P.; Sadi, Toufik; Wang, Yijiao; Adamu-Lema, Fikru; Wang, Xingsheng; Amoroso, Salvatore M.; Towie, Ewan; Brown, Andrew; Asenov, Asen (2017)
Publisher: Elsevier
Languages: English
Types: Article
In this work we investigate the impact of quantum mechanical effects on the device performance of n-type silicon nanowire transistors (NWT) for possible future CMOS applications at the scaling limit. For the purpose of this paper, we created Si NWTs with two channel crystallographic orientations <110> and <100> and six different cross-section profiles. In the first part, we study the impact of quantum corrections on the gate capacitance and mobile charge in the channel. The mobile charge to gate capacitance ratio, which is an indicator of the intrinsic performance of the NWTs, is also investigated. The influence of the rotating of the NWTs cross-sectional geometry by 90o on charge distribution in the channel is also studied. We compare the correlation between the charge profile in the channel and cross-sectional dimension for circular transistor with four different cross-sections diameters: 5nm, 6nm, 7nm and 8nm. In the second part of this paper, we expand the computational study by including different gate lengths for some of the Si NWTs. As a result, we establish a correlation between the mobile charge distribution in the channel and the gate capacitance, drain-induced barrier lowering (DIBL) and the subthreshold slope (SS). All calculations are based on a quantum mechanical description of the mobile charge distribution in the channel. This description is based on the solution of the Schrödinger equation in NWT cross sections along the current path, which is mandatory for nanowires with such ultra-scale dimensions.

Share - Bookmark

Download from

Cite this article