LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: The American Phytopathological Society
Languages: English
Types: Article
Subjects: QK, SB

Classified by OpenAIRE into

mesheuropmc: food and beverages
Sweet potato chlorotic fleck virus (SPCFV) has recently been classified as a putative new member of the genus Carlavirus (family Flexiviridae) on the basis of its molecular properties. In this study, SPCFV was characterized in terms of host range, physical and biological characteristics, and genetic variability. In addition to sweet potato, SPCFV infected some plant species in the families Convolvulaceae, Chenopodiaceae, and Solanaceae. Limited numbers of virus particles were observed in the assimilation parenchyma cells of infected plant tissues; some cells had a distorted and enlarged endoplasmic reticulum though without any cytoplasmic and amorphous inclusions. The normal length of SPCFV particles was determined to be approximately 800 nm. In enzyme-linked immunosorbent assays, polyclonal antibodies raised against purified SPCFV virions were able to detect the virus in infected sweet potato and indicator plant tissues. In immunoelectron microscopy, SPCFV particles were all strongly decorated when reacted with homologous antiserum. Comparison of the 3′ terminal part of the genome of a range of geographically diverse isolates revealed a high level of genetic diversity. The amino acid sequence identity in the coat protein and the nucleic acid binding protein ranged from 89 to 99.7% and from 75.9 to 99.2%, respectively. Phylogenetic analysis of both proteins showed a geographically associated clustering into two genogroups.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Adams, M. J., Accotto, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Brunt, A. A., Candresse, T., Coutts, R. H. A., Dolja, V. V., Falk, B. W., Foster, G. D., Gonsalves, D., Jelkmann, W., Karasev, A., Martelli, G. P., Mawassi, M., Milne, R. G., Minafra, A., Namba, S., Rowhani, A., Vetten, H. J., Vishnichenko, V. K., Wisler, G. C., Yoshikawa, N., and Zavriev, S. K. 2005. Family Flexiviridae. Pages 1089-1124 in: Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee on Taxonomy of Viruses. C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, and L. A. Ball, eds. Elsevier/Academic Press, Oxford.
    • 2. Adams, M. J., Antoniw, J. F., Bar-Joseph, M., Brunt, A. A., Candresse, T., Foster, G. D., Martelli, G. P., Milne, R. G., Zavriev, S. K., and Fauquet, C. M. 2004. The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch. Virol. 149:1045-1060.
    • 3. Antignus, Y., and Cohen, S. 1987. Purification and some properties of a new strain of cowpea mild mottle virus in Israel. Ann. Appl. Biol. 110:563-569.
    • 4. Aritua, V., Barg, E., Gibson, R. W., Adipala, E., and Vetten, H. J. 2007. Sequence analysis of the entire RNA genome of sweet potato chlorotic fleck virus reveals that it belongs to a distinct carlavirus species. Arch. Virol. 152:813-818.
    • 5. Aritua, V., Bua, B., Barg, E., Vetten, H. J., Adipala, E., and Gibson, R. W. 2007. Incidence of five viruses infecting sweet potatoes in Uganda; the first evidence of Sweet potato caulimo-like virus in Africa. Plant Pathol. 56:324-331.
    • 6. Ateka, E. M., Njeru, R. W., Kibaru, A. G., Kimenju, J. W., Barg, E., Gibson, R. W., and Vetten, H. J. 2004. Identification and distribution of viruses infecting sweet potato in Kenya. Ann. Appl. Biol. 144:371-379.
    • 7. CIP. 1991. International Potato Center Annual Report 1991. CIP, Lima, Peru.
    • 8. CIP. 1992. International Potato Center Annual Report 1992. CIP, Lima, Peru.
    • 9. Choi, A., and Ryu, K. H. 2003. The complete nucleotide sequence of the genome RNA of Lily symptomless virus and its comparison with that of other carlaviruses. Arch. Virol. 148:1943-1955.
    • 10. Clark, M. F., and Adams, N. 1977. Characteristics of the microtitre plate method of the enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses. J. Gen. Virol. 34:475-483.
    • 11. Edwardson, J. R. 1974. Some properties of the potato virus Y-group. Florida Agricultural Experiment Station Monograph Series No. 4.
    • 12. Edwardson, J. R., and Christie, R. G. 1996. Cylindrical Inclusions. Page 79 in: University of Florida Agricultural Experiment Station Bulletin 874.
    • 13. Foster, G. D., and Mills, P. R. 1991. Occurrence of chloroplast ribosome recognition sites within conserved elements of the RNA genomes of carlaviruses. FEBS Lett. 280:341- 343.
    • 14. Froussard, P. 1992. A random PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res. 20:2900.
    • 15. Fuentes, S., and Salazar, L. F. 1992. Identification of a new sweet potato virus. Fitopatologia 27:50.
    • 16. Hataya, T., Arimoto, R., Suda, N., and Uyeda, I. 2001. Molecular characterization of hop mosaic virus: its serological and molecular relationship to hop latent virus. Arch. Virol. 146:1935-1948.
    • 17. Higgins, D. G., Bleasby, A. J., and Fuchs, R. 1992. CLUSTAL V: improved software for multiple sequence alignment. Comp. Appl. Biosci. (CABIOS) 8:189-191.
    • 18. Jukes, T. H., and Cantor, C. R. 1969. Evolution of protein molecules. Pages 21-132 in: Mammalian Protein Metabolism. H. N. Munro, ed. Academic Press, New York.
    • 19. Koenig, R., and Lesemann, D.-E. 1985. Plant viruses in German rivers and lakes. Phytopathol. Z. 112:105-116.
    • 20. Lee, B. Y., Min, B. E., Ha, J. H., Lee, M.Y., Paek, K. H., and Ryu, K. H. 2005. Genome structure and complete sequence of genomic RNA of Daphne virus S. Arch. Virol. 151:193- 200.
    • 21. Mackenzie, D. J., McLean, M. A., Mukerji, S., and Green, M., 1997. Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction. Plant Dis. 81:222-226.
    • 22. Matoušek, J., Schubert J., D di , P., and Ptá ek, J. 2000. A broad variability of Potato virus S (PVS) revealed by reverse transcriptase-polymerase chain reaction. Can. J. Plant Pathol. 22:29-37.
    • 23. Milne, R. G., and Lesemann, D.-E. 1984. Immunosorbent electron microscopy in plant virus studies. Pages 85-101 in: Methods in Virology, vol. VIII. K. Maramorosch and H. Koprowski, eds. Academic Press, New York and London.
    • 24. Mukasa, S. B., Rubaihayo, P. R., and Valkonen, J. P. T. 2003. Incidence of viruses and viruslike diseases of sweetpotato in Uganda. Plant Dis. 87:329-335.
    • 25. Nagata, T., Alves, D. M. T., Inoue-Nagata, A. K., Tian, T.-Y., Kitajima, E. W., Cardoso, J. E., and de Avila, A. C. 2005. A novel melon flexivirus transmitted by whitefly. Arch Virol. 150:379-387.
    • 26. Noordam, D. 1973. Identification of Plant Viruses, Methods and Experiments. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
    • 27. Rott, M. E., and Jelkmann, W. 2001. Characterisation and detection of several filamentous viruses of cherry: adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. Eur. J. Phytopathol. 107:411-420.
    • 28. Salazar, L. F., and Fuentes, S. 2000. Current knowledge on major virus diseases of sweet potato. Pages 14-19 in: Int. Workshop Sweetpotato Cultivar Decline Study. Kyushu National Agricultural Experiment Station, Miyakonojo, Miyazaki, Japan.
    • 29. Tairo, F., Kullaya, A., and Valkonen, J. P. T. 2004. Incidence of viruses infecting sweetpotato in Tanzania. Plant Dis. 88:916-920.
    • 30. Van de Peer, Y., and De Wachter, R. 1993. TREECON: a software package for the construction and drawing of evolutionary trees. Comp. Appl. Biosci. 9:177-182.
    • 31. Vetten, H. J., Green, S. K., and Lesemann, D.- E. 1992. Characterization of peanut stripe virus isolates from soybean in Taiwan. J. Phytopathol. 135:107-124.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article