LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects:

Classified by OpenAIRE into

ACM Ref: ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS
Wireless communications have been extensively studied for several decades, which has led to various new advancements, including new technologies in the field of Intelligent Transport Systems. Vehicular Ad hoc Networks or VANETs are considered to be a long-term solution, contributing significantly towards Intelligent Transport Systems in providing access to critical life-safety applications and infotainment services. These services will require ubiquitous connectivity and hence there is a need to explore seamless handover mechanisms. Although VANETs are attracting greater commercial interest, current research has not adequately captured the realworld constraints in Vehicular Ad hoc Network handover techniques. Due to the high velocity of the vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one Road Side Unit (RSU) to another and this comes at the cost of overlapping signals of adjacent RSUs. Therefore, a framework is needed to be able to calculate the regions of overlap in adjacent RSU coverage ranges to guarantee ubiquitous connectivity. This thesis is about providing such a framework by analysing in detail the communication mechanisms in a VANET network, firstly by means of simulations using the VEINs framework via OMNeT++ and then using analytical analysis of the probability of successful packet reception. Some of the concepts of the Y-Comm architecture such as Network Dwell Time, Time Before Handover and Exit Times have been used to provide a framework to investigate handover issues and these parameters are also used in this thesis to explore handover in highly mobile environments such as VANETs. Initial investigation showed that seamless communication was dependant on the beacon frequency, length of the beacon and the velocity of the vehicle. The effects of each of these parameters are explored in detail and results are presented which show the need for a more probabilistic approach to handover based on cumulative probability of successful packet reception. In addition, this work shows how the length of the beacon affects the rate of change of the Signal-to-Noise ratio or SNR as the vehicle approaches the Road-Side Unit. However, the velocity of the vehicle affects both the cumulative probability as well as the Signal-to-Noise ratio as the vehicle approaches the Road-Side Unit. The results of this work will enable systems that can provide ubiquitous connectivity via seamless handover using proactive techniques because traditional models of handover are unable to cope with the high velocity of the vehicles and relatively small area of coverage in these environments. Finally, a testbed has been set-up at the Middlesex University, Hendon campus for the purpose of achieving a better understanding of VANET systems operating in an urban environment. Using the testbed, it was observed that environmental effects have to be taken into considerations in real-time deployment studies to see how these parameters can affect the performance of VANET systems under different scenarios. This work also highlights the fact that in order to build a practical system better propagation models are required in the urban context for highly mobile environments such as VANETs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 8.3 Final Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
    • Appendix A 171 A.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.1.1 Equation for Calculating dP/dSNR . . . . . . . . . . . . . 171 A.1.2 Calculation for P with respect to velocity using dP/dR . . 174
    • 1.1 An Intelligent Transport System Scenario . . . . . . . . . . . . . . 1
    • 1.2 A VANET scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
    • 2.1 An example of a Safety Application. . . . . . . . . . . . . . . . . . 17
    • 2.2 An example of a Non-Safety Application . . . . . . . . . . . . . . 19
    • 2.3 WAVE Protocol Architecture. . . . . . . . . . . . . . . . . . . . . . 21
    • 2.4 WAVE reference model. . . . . . . . . . . . . . . . . . . . . . . . . 22
    • 2.5 TDMA Channel Time. . . . . . . . . . . . . . . . . . . . . . . . . . 23
    • 2.6 Channel Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    • 2.7 Channel Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    • 2.8 Guard Interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
    • 2.9 Diferent Channel Access Options. . . . . . . . . . . . . . . . . . . 26
    • 2.10 Prioritization Mechanism. . . . . . . . . . . . . . . . . . . . . . . 28
    • 2.11 Inter-frame Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    • 2.12 Channel Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    • 2.13 WSMP Packet Format. . . . . . . . . . . . . . . . . . . . . . . . . 33
    • 2.14 Handover Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
    • 2.15 YComm Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 35
    • 2.16 Illustrating TBVH and NDT . . . . . . . . . . . . . . . . . . . . . 37
    • 2.17 CORNER Propagation Model . . . . . . . . . . . . . . . . . . . . . 49
    • 2.18 Taxanomy of VANET Simulators. . . . . . . . . . . . . . . . . . . 58
    • 3.1 Simulation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
    • 3.2 Coverage Segmentation. . . . . . . . . . . . . . . . . . . . . . . . 67
    • 3.3 Handover process and corresponding messages. . . . . . . . . . . 68
    • 3.4 Handover Procedures in Simulation Scenario. . . . . . . . . . . . 71
    • 3.5 Beacons Received at Vehicle. . . . . . . . . . . . . . . . . . . . . . 72
    • 3.6 Received Power at Vehicle. . . . . . . . . . . . . . . . . . . . . . . 73
    • 3.7 Received Power at the Vehicle in the Overlapping Region. . . . . . 74
    • 4.1 PHY and MAC Segmentation. . . . . . . . . . . . . . . . . . . . . 79
    • 4.2 PacketOK vs DblRand. . . . . . . . . . . . . . . . . . . . . . . . . 80
    • 4.3 NDTi vs NDTr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
    • 4.4 NDTr with diferent Beacon Sizes (10m/s). . . . . . . . . . . . . . 81
    • 4.5 NDTr with diferent Beacon Sizes (30m/s). . . . . . . . . . . . . . 82
    • 4.6 Entry Side of Coverage Area (10m/s). . . . . . . . . . . . . . . . . 83
    • 4.7 Entry Side of Coverage Area (30m/s). . . . . . . . . . . . . . . . . 84
    • 4.8 First & Last Beacon received at PHY & MAC layers. . . . . . . . . 84
    • 4.9 Exit Side of Coverage Area (10m/s). . . . . . . . . . . . . . . . . . 85
    • 4.10 Exit Side of Coverage Area (30m/s). . . . . . . . . . . . . . . . . . 85
    • 5.1 CP reaching 1 (Entry Region - 10m/s). . . . . . . . . . . . . . . . . 89
    • 5.2 CP reaching 1 (Entry Region - 30m/s). . . . . . . . . . . . . . . . . 90
    • 5.3 CPn reaching 0 (Exit Region - 10m/s). . . . . . . . . . . . . . . . . 90
    • 5.4 CPn reaching 0 (Exit Region - 30m/s). . . . . . . . . . . . . . . . . 91
    • 5.5 NDT of Probability vs NDT of Cumulative Probablity (10m/s). . . . . . 91
    • 5.6 NDT of Probability vs NDT of Cumulative Probablity (30m/s). . . . . . 92
    • 5.7 Comparision of P NDT vs CP NDT vs NDTr vs NDTi (10m/s). . . . . . 93
    • 5.8 Comparision of P NDT vs CP NDT vs NDTr vs NDTi (30m/s). . . . . . 93
    • 5.9 ∆ P vs SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
    • 5.10 Traditional and Probabilistic Segmentation. . . . . . . . . . . . . . 96
    • 5.11 NDT - From Concept to Reality . . . . . . . . . . . . . . . . . . . 97
    • 5.12 Overlapping Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 101
    • 5.13 Overlapping Distance. . . . . . . . . . . . . . . . . . . . . . . . . . 102
    • 6.1 Comparison of Simulation vs. Analytical Model. . . . . . . . . . . 108
    • 6.2 Comparison of Analytical Model vs. Approximation. . . . . . . . 109
    • 6.3 Approximate with diferent Packet Lengths. . . . . . . . . . . . . 109
    • 6.4 Rate of change vs. Packet Length. . . . . . . . . . . . . . . . . . . 110
    • 6.5 Comparison of dSNR vs. dR. . . . . . . . . . . . . . . . . . . . . . 112
    • 6.6 Comparison of dP vs. dR. . . . . . . . . . . . . . . . . . . . . . . . 112
    • 6.7 Comparison of P and CP for 30 m/sec. . . . . . . . . . . . . . . . . 115
    • 6.8 Comparing P and CP for 1Hz. . . . . . . . . . . . . . . . . . . . . 115
    • 6.9 Comparison of P and CP for 10Hz. . . . . . . . . . . . . . . . . . . 116
    • 6.10 Comparison of P of 1Hz and 10Hz. . . . . . . . . . . . . . . . . . . 116
    • 6.11 Comparison of CP of 1Hz and 10Hz. . . . . . . . . . . . . . . . . . 117
    • 3.1 RSU Configuration Parameters. . . . . . . . . . . . . . . . . . . . 71
    • 3.2 OBU Configuration Parameters. . . . . . . . . . . . . . . . . . . . 72
    • 3.3 Comparison of NDT: Simulaiton vs. Theoretical . . . . . . . . . . 75
    • 3.4 Exit Time from Simulation. . . . . . . . . . . . . . . . . . . . . . . 75
    • 3.5 Overlapping Distance (λ =1Hz). . . . . . . . . . . . . . . . . . . . . 76
    • 3.6 Overlapping Distance (λ =5Hz). . . . . . . . . . . . . . . . . . . . . 76
    • 3.7 Overlapping Distance (λ =10Hz). . . . . . . . . . . . . . . . . . . . 76
    • 5.1 Communication Time (secs) between the Segments . . . . . . . . 98
    • M. Almulla, Yikun Wang, A. Boukerche, and Zhenxia Zhang. Design of a fast location-based handof scheme for ieee 802.11 vehicular networks. Vehicular Technology, IEEE Transactions on, 63(8):3853-3866, Oct 2014. ISSN 0018-9545. doi: 10.1109/TVT.2014.2309677. URL http://dx.doi.org/10.1109/TVT.2014.2309677. 36
    • Andras Varga. Omnet++: An extensible, modular, component-based c++ network simulation, Jan 2014. URL http://www.omnetpp.org/. 56, 64, 69, 71, 100
    • Apple. Carplay: An app for apple auto ios and iphone, Jan 2016. URL http: //www.apple.com/uk/ios/carplay/. 158
    • AradaSystems. Arada systems, Dec 2015. URL http://www.aradasystems.com. 124
    • Kamran Arshad, Ferdinand Katsriku, and Aboubaker Lasebae. An investigation of wave propagation over irregular terrain and urban streets using finite elements. In Proceedings of the 6th WSEAS Int. Conference on Telecommunications and Informatics, TELE-INFO'07, pages 105-110, Stevens Point, Wisconsin, USA, 2007. World Scientific and Engineering Academy and Society (WSEAS). ISBN 888-777- 6666-55-4. URL http://dl.acm.org/citation.cfm?id=1353841.1353861. 51
    • Maen M. Artimy, William Robertson, and William J. Phillips. Vehicular Ad Hoc Networks: An Emerging Technology Toward Safe and Eficient Transportation , pages 405-432. John Wiley & Sons, Inc., 2008. ISBN 9780470396384. doi: 10.1002/9780470396384.ch14. URL http://dx.doi.org/10.1002/9780470396384.ch14. 16, 17, 18, 19
    • M. Augusto, R. Vanni, H. Guardia, M. Aiash, G. Mapp, and S. Moreira. Myhand: A novel architecture for improving handovers in ngns, Jan 2014. URL http://www. thinkmind.org/index.php?view=article&articleid=aict_2013_9_40_10181. 36, 39, 40
    • A. Autolitano, C. Campolo, A. Molinaro, R.M. Scopigno, and A. Vesco. An insight into decentralized congestion control techniques for vanets from etsi ts 102 687 v1.1.1. In Wireless Days (WD), 2013 IFIP, pages 1-6, Nov 2013. doi: 10.1109/WD. 2013.6686471. URL http://dx.doi.org/10.1109/WD.2013.6686471. 8
    • Fan Bai and B. Krishnamachari. Exploiting the wisdom of the crowd: localized, distributed information-centric vanets [topics in automotive networking]. Communications Magazine, IEEE, 48(5):138-146, May 2010. ISSN 0163-6804. doi: 10. 1109/MCOM.2010.5458375. URL http://dx.doi.org/10.1109/MCOM.2010.5458375. 10
    • Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo - simulation of urban mobility: An overview. In in SIMUL 2011, The Third International Conference on Advances in System Simulation, pages 63-68, 2011. 55
    • Blackberry. The qnx car platform: A car platform for infotainment., Jan 2016. URL http://www.qnx.com/products/qnxcar/index.html. 158
    • Annette Bohm and Magnus Jonsson. Handover in ieee 802.11p-based delay-sensitive vehicle-to-infrastructure communication. Technical Report IDE - 0924, Halmstad University, Embedded Systems (CERES), 2009. URL http://www.diva-portal.org/ smash/get/diva2:232276/FULLTEXT01.pdf. 38
    • C. Campolo and A. Molinaro. On vehicle-to-roadside communications in 802.11p/wave vanets. In Wireless Communications and Networking Conference (WCNC), 2011 IEEE, pages 1010-1015, March 2011a. doi: 10.1109/WCNC.2011. 5779273. URL http://dx.doi.org/10.1109/WCNC.2011.5779273. 10
    • C. Campolo and A. Molinaro. Improving v2r connectivity to provide its applications in ieee 802.11p/wave vanets. In Telecommunications (ICT), 2011 18th International Conference on, pages 476-481, May 2011b. doi: 10.1109/CTS.2011.5898972. URL http://dx.doi.org/10.1109/CTS.2011.5898972. 10
    • C. Campolo, Y. Koucheryavy, A. Molinaro, and A. Vinel. Characterizing broadcast packet losses in ieee 802.11p/wave vehicular networks. In Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, pages 735-739, Sept 2011a. doi: 10.1109/PIMRC.2011.6140063. URL http: //dx.doi.org/10.1109/PIMRC.2011.6140063. 10
    • C. Campolo, A. Vinel, A. Molinaro, and Y. Koucheryavy. Modeling broadcasting in ieee 802.11p/wave vehicular networks. Communications Letters, IEEE, 15(2): 199-201, 2011b. ISSN 1089-7798. doi: 10.1109/LCOMM.2011.122810.102007. URL http://dx.doi.org/10.1109/LCOMM.2011.122810.102007. 3, 69
    • David R. Chofnes and Fabián E. Bustamante. An integrated mobility and trafic model for vehicular wireless networks. In Proceedings of the 2Nd ACM International Workshop on Vehicular Ad Hoc Networks, VANET '05, pages 69-78, New York, NY, USA, 2005. ACM. ISBN 1-59593-141-4. doi: 10.1145/1080754.1080765. URL http://doi.acm.org/10.1145/1080754.1080765. 57
    • Christoph Sommer. Veins: Vehicles in network simulation, Jan 2014. URL http: //veins.car2x.org/. 56, 64, 69, 71, 72, 132
    • Jong-Moon Chung, Minseok Kim, Yong-Suk Park, Myungjun Choi, Sang Woo Lee, and Hyun seo Oh. Time coordinated v2i communications and handover for wave networks. Selected Areas in Communications, IEEE Journal on, 29(3): 545-558, March 2011. ISSN 0733-8716. doi: 10.1109/JSAC.2011.110305. URL http://dx.doi.org/10.1109/JSAC.2011.110305. 3, 38, 69
    • Hugo Conceição, Luís Damas, Michel Ferreira, and João Barros. Large-scale simulation of v2v environments. In Proceedings of the 2008 ACM Symposium on
    • J. Deygout. Correction factor for multiple knife-edge difraction. Antennas and Propagation, IEEE Transactions on, 39(8):1256-1258, Aug 1991. ISSN 0018-926X. doi: 10.1109/8.97368. URL http://dx.doi.org/10.1109/8.97368. 51
    • J. Dias, A. Cardote, F. Neves, S. Sargento, and A. Oliveira. Seamless horizontal and vertical mobility in vanet. In Vehicular Networking Conference (VNC), 2012 IEEE, pages 226-233, Nov 2012. doi: 10.1109/VNC.2012.6407436. URL http: //dx.doi.org/10.1109/VNC.2012.6407436. 38
    • Dr.Glenford Mapp. Y-comm research, Jan 2014. URL http://www.mdx.ac.uk/ research/science_technology/informatics/projects/ycomm.aspx. 33
    • David Eckhof and Christoph Sommer. A multi-channel ieee 1609.4 and 802.11p edca model for the veins framework. In 5th ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2012): 5th ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2012), Poster Session, Desenzano, Italy, March 2012. ACM. URL http://www. ccs-labs.org/bib/eckhof2012multichannel/eckhof2012multichannel.pdf. 30
    • MahmoudHashem Eiza, Qiang Ni, Thomas Owens, and Geyong Min. Investigation of routing reliability of vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2013(1):179, 2013. doi: 10.1186/ 1687-1499-2013-179. URL http://dx.doi.org/10.1186/1687-1499-2013-179. 2
    • Paal E Engelstad and Olav N Østerbo. Queueing delay analysis of ieee 802.11 e edca. In WONS 2006: Third Annual Conference on Wireless On-demand Network Systems and Services, pages 123-133, 2006. 41
    • F. Esposito, A.M. Vegni, I. Matta, and A. Neri. On modeling speed-based vertical handovers in vehicular networks: Dad, slow down, i am watching the movie. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pages 11-15, Dec 2010. doi: 10.1109/GLOCOMW.2010.5700126. URL http://dx.doi.org/10.1109/GLOCOMW. 2010.5700126. 10
    • EuropeanCommission. Horizon 2020: The eu framework programme for research and innovation, Nov 2015. URL http://ec.europa.eu/programmes/horizon2020/ en/area/transport. 1, 2, 18
    • R. Fernandes and M. Ferreira. Scalable vanet simulations with ns-3. In Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th, pages 1-5, May 2012. doi: 10.1109/VETECS.2012.6240251. URL http://dx.doi.org/10.1109/VETECS.2012. 6240251. 57, 58
    • R. Fernandes, P.M. d'Orey, and M. Ferreira. Divert for realistic simulation of heterogeneous vehicular networks. In Mobile Adhoc and Sensor Systems (MASS), 2010 IEEE 7th International Conference on, pages 721-726, Nov 2010. doi: 10.1109/ MASS.2010.5663806. URL http://dx.doi.org/10.1109/MASS.2010.5663806. 57
    • M. Fiore, J. Harri, F. Filali, and C. Bonnet. Vehicular mobility simulation for vanets. In Simulation Symposium, 2007. ANSS '07. 40th Annual, pages 301-309, March 2007. doi: 10.1109/ANSS.2007.44. URL http://dx.doi.org/10.1109/ANSS.2007.44. 57
    • P Fuxjager, A Costantini, D Valerio, P Castiglione, G Zacheo, T Zemen, and F Ricciato. Ieee 802.11 p transmission using gnuradio. In Proceedings of the IEEE 6th Karlsruhe Workshop on Software Radios (WSR), pages 83-86, 2010. URL http://userver.ftw.at/~valerio/files/wsr10.pdf. 80, 97
    • Carlos Ganan, Jonathan Loo, Arindam Ghosh, Oscar Esparza, Sergi Rene, and JoseL. Munoz. Analysis of inter-rsu beaconing interference in vanets. In Boris Bellalta, Alexey Vinel, Magnus Jonsson, Jaume Barcelo, Roman Maslennikov, Periklis Chatzimisios, and David Malone, editors, Multiple Access Communications, volume 7642 of Lecture Notes in Computer Science, pages 49-59. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34975-1. URL http://dx.doi.org/10.1007/ 978-3-642-34976-8_5. 3, 4, 8, 9, 68, 69, 72, 100, 102
    • A. Ghosh, V. Vardhan, G. Mapp, O. Gemikonakli, and J. Loo. Providing ubiquitous communication using road-side units in vanet systems: Unveiling the challenges. In ITS Telecommunications (ITST), 2013 13th International Conference on, pages 74-79, Nov 2013. doi: 10.1109/ITST.2013.6685524. URL http://dx.doi.org/10.1109/ ITST.2013.6685524. 3, 4
    • A. Ghosh, V.V. Paranthaman, G. Mapp, and O. Gemikonakli. Providing ubiquitous communication using handover techniques in vanet systems. In Ad Hoc Networking Workshop (MED-HOC-NET), 2014 13th Annual Mediterranean, pages 195-202, June 2014a. doi: 10.1109/MedHocNet.2014.6849124. URL http://dx.doi.org/10.1109/MedHocNet.2014.6849124. 4
    • A. Ghosh, V. Vardhan, G. Mapp, and O Gemikonakli. Exploring eficient seamless handover in vanet systems using network dwell time. EURASIP Journal on Wireless Communications and Networking, 2014(1):227, 2014b. ISSN 1687-1499. doi: 10.1186/1687-1499-2014-227. URL http://jwcn.eurasipjournals.com/content/ 2014/1/227. 4, 99, 100, 122
    • A. Ghosh, V.V. Paranthaman, G. Mapp, O. Gemikonakli, and J. Loo. Enabling seamless v2i communications: toward developing cooperative automotive applications in vanet systems. Communications Magazine, IEEE, 53(12):80-86,
    • E. Giordano, R. Frank, G. Pau, and M. Gerla. Corner: a realistic urban propagation model for vanet. In Wireless On-demand Network Systems and Services (WONS), 2010 Seventh International Conference on, pages 57-60, Feb 2010. doi: 10.1109/ WONS.2010.5437133. URL http://dx.doi.org/10.1109/WONS.2010.5437133. 49
    • J. Gozalvez, M. Sepulcre, and R. Bauza. Ieee 802.11p vehicle to infrastructure communications in urban environments. Communications Magazine, IEEE, 50 (5):176-183, 2012. ISSN 0163-6804. doi: 10.1109/MCOM.2012.6194400. URL http://dx.doi.org/10.1109/MCOM.2012.6194400. 42, 121
    • Huaqun Guo, Shen Tat Goh, N.C.S. Foo, Qian Zhang, and Wai-Choong Wong. Performance evaluation of 802.11p device for secure vehicular communication. In Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International, pages 1170-1175, July 2011. doi: 10.1109/IWCMC.2011.5982706. URL http://dx.doi.org/10.1109/IWCMC.2011.5982706. 18, 19
    • Martin PM Hall, Leslie W Barclay, and M Tim Hewitt. A review of: Propagation of radiowaves. European Journal of Engineering Education, 22(2):224-224, 1997. doi: 10.1080/03043799708928278. URL http://dx.doi.org/10.1080/03043799708928278. 51
    • Chong Han, M. Dianati, R. Tafazolli, R. Kernchen, and Xuemin Shen. Analytical study of the ieee 802.11p mac sublayer in vehicular networks. Intelligent Transportation Systems, IEEE Transactions on, 13(2):873-886, June 2012. ISSN 1524-9050. doi: 10.1109/TITS.2012.2183366. URL http://dx.doi.org/10.1109/TITS. 2012.2183366. 27, 28, 29, 30
    • J. Harri, F. Filali, and C. Bonnet. Mobility models for vehicular ad hoc networks: a survey and taxonomy. Communications Surveys Tutorials, IEEE, 11(4):19-41, Fourth 2009. ISSN 1553-877X. doi: 10.1109/SURV.2009.090403. URL http://dx.doi. org/10.1109/SURV.2009.090403. 55, 57
    • Aamir. Hassan and Tony. Larsson. On the requirements on models and simulator design for integrated vanet simulation. In 8th International Workshop on Intelligent Transport System, pages 191-196, March 2011. URL http://www.diva-portal.org/ smash/record.jsf?pid=diva23A437424&dswid=_new. 56
    • M. Hatay. Empirical formula for propagation loss in land mobile radio services. Vehicular Technology, IEEE Transactions on, 29(3):317-325, Aug 1980. ISSN 0018- 9545. doi: 10.1109/T-VT.1980.23859. URL http://dx.doi.org/10.1109/T-VT.1980. 23859. 48
    • Herbert V Hitney. Refractive efects from vhf to ehf. part a: Propagation mechanisms. In In AGARD, Propagation Modelling and Decision Aids for Communications, Radar and Navigation Systems 13 p (SEE N95-14825 03-32), volume 1, 1994. 51
    • M. Jerbi, S.-M. Senouci, and M. Al Haj. Extensive experimental characterization of communications in vehicular ad hoc networks within diferent environments. In Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pages 2590- 2594, April 2007. doi: 10.1109/VETECS.2007.533. URL http://dx.doi.org/10.1109/ VETECS.2007.533. 42
    • G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil. Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. Communications Surveys Tutorials, IEEE, 13 (4):584-616, 2011. ISSN 1553-877X. doi: 10.1109/SURV.2011.061411.00019. URL http://dx.doi.org/10.1109/SURV.2011.061411.00019. 2
    • F.K. Karnadi, Zhi Hai Mo, and Kun chan Lan. Rapid generation of realistic mobility models for vanet. In Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, pages 2506-2511, March 2007. doi: 10.1109/WCNC.2007. 467. URL http://dx.doi.org/10.1109/WCNC.2007.467. 57
    • I. Khan and A. Qayyum. Performance evaluation of aodv and olsr in highly fading vehicular ad hoc network environments. In Multitopic Conference, 2009. INMIC 2009. IEEE 13th International, pages 1-5, Dec 2009. doi: 10.1109/INMIC.2009. 5383121. URL http://dx.doi.org/10.1109/INMIC.2009.5383121. 51
    • A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld, T. E. V. Parker, O. W. Visser, H. S. Lichte, and S. Valentin. Simulating wireless and mobile networks in omnet++ the mixim vision. In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools '08, pages 71:1-71:8, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-20-2. URL http://dl.acm. org/citation.cfm?id=1416222.1416302. 59
    • Daniel Krajzewicz. Trafic simulation with sumo - simulation of urban mobility. In Jaume Barceló, editor, Fundamentals of Trafic Simulation , volume 145 of International Series in Operations Research & Management Science, pages 269-293. Springer New York, 2010. ISBN 978-1-4419-6141-9. doi: 10.1007/
    • Hyukjoon Lee, Young uk Chung, and Yong-Hoon Choi. A seamless handover scheme for ieee wave networks based on multi-way proactive caching. In Ubiquitous and Future Networks (ICUFN), 2013 Fifth International Conference on, pages 356-361, 2013. doi: 10.1109/ICUFN.2013.6614841. URL http://dx.doi.org/10.1109/ICUFN. 2013.6614841. 39
    • Yunxin(Jef) Li. An overview of the dsrc/wave technology. In Xi Zhang and Daji Qiao, editors, Quality, Reliability, Security and Robustness in Heterogeneous Networks, volume 74 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pages 544-558. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-29221-7. doi: 10.1007/978-3-642-29222-4_38. URL http://dx.doi.org/10.1007/978-3-642-29222-4_38. 20, 22, 30, 31, 32, 33
    • Jia-Chin Lin, Chi-Sheng Lin, Chih-Neng Liang, and Bo-Chiuan Chen. Wireless communication performance based on ieee 802.11p r2v field trials. Communications Magazine, IEEE, 50(5):184-191, May 2012. ISSN 0163-6804. doi: 10.1109/MCOM. 2012.6194401. URL http://dx.doi.org/10.1109/MCOM.2012.6194401. 42, 121
    • Christian Lochert, Andreas Barthels, Alfonso Cervantes, Martin Mauve, and Murat Caliskan. Multiple simulator interlinking environment for ivc. In Proceedings of the 2Nd ACM International Workshop on Vehicular Ad Hoc Networks, VANET '05, pages 87-88, New York, NY, USA, 2005. ACM. ISBN 1-59593-141-4. doi: 10.1145/1080754.1080771. URL http://doi.acm.org/10.1145/1080754.1080771. 59
    • Atulya Mahajan, Niranjan Potnis, Kartik Gopalan, and Andy Wang. Modeling vanet deployment in urban settings. In Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM '07, pages 151-158, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-851-0. doi: 10.1145/1298126.1298154. URL http://doi.acm.org/10.1145/1298126.1298154. 51
    • G. Mapp, F. Shaikh, M. Aiash, R.P. Vanni, M. Augusto, and E. Moreira. Exploring eficient imperative handover mechanisms for heterogeneous wireless networks. In Network-Based Information Systems, 2009. NBIS '09. International Conference on, pages 286-291, Aug 2009. doi: 10.1109/NBiS.2009.95. URL http://dx.doi.org/ 10.1109/NBiS.2009.95. 33, 35
    • Glenford E. Mapp, Fatema Shaikh, David Cottingham, Jon Crowcroft, and Javier Baliosian. Y-comm: A global architecture for heterogeneous networking. In Proceedings of the 3rd International Conference on Wireless Internet, WICON '07, pages 22:1-22:5, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-12-7. URL http://dl.acm.org/citation.cfm?id=1460047.1460075. 35, 39
    • Francisco J. Martinez, Chai-Keong Toh, Juan-Carlos Cano, Carlos T. Calafate, and Pietro Manzoni. Realistic radio propagation models (rpms) for vanet simulations. In Proceedings of the 2009 IEEE Conference on Wireless Communications & Networking Conference, WCNC'09, pages 1155-1160, Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-2947-9. URL http://dl.acm.org/citation.cfm?id= 1688345.1688552. 45, 46
    • J. Montavont and T. Noel. Ieee 802.11 handovers assisted by gps information. In Wireless and Mobile Computing, Networking and Communications, 2006. (WiMob'2006). IEEE International Conference on, pages 166-172, 2006. doi: 10. 1109/WIMOB.2006.1696358. URL http://dx.doi.org/10.1109/WIMOB.2006.1696358. 38
    • A. Mukunthan, C. Cooper, F. Safaei, D. Franklin, and M. Abolhasan. Studying the impact of the corner propagation model on vanet routing in urban environments. In Vehicular Technology Conference (VTC Fall), 2012 IEEE, pages 1-5, Sept 2012. doi: 10.1109/VTCFall.2012.6399132. URL http://dx.doi.org/10.1109/VTCFall.2012. 6399132. 46, 50
    • M. Nakagami. The m-distribution-a general formula of intensity distribution of rapid fading. In W.C. HOFFMAN, editor, Statistical Methods in Radio Wave Propagation, pages 3 - 36. Pergamon, 1960. ISBN 978-0-08-009306-2. doi: http: //dx.doi.org/10.1016/B978-0-08-009306-2.50005-4. URL http://www.sciencedirect. com/science/article/pii/B9780080093062500054. 47, 51
    • H. Noori and B.B. Olyaei. A novel study on beaconing for vanet-based vehicle to vehicle communication: Probability of beacon delivery in realistic large-scale urban area using 802.11p. In Smart Communications in Network Technologies (SaCoNeT), 2013 International Conference on, volume 01, pages 1-6, June 2013. doi: 10.1109/SaCoNeT.2013.6654589. URL http://dx.doi.org/10.1109/SaCoNeT.2013. 6654589. 55, 56, 59
    • Y. Okumura. Field strength and its variability in vhf and uhf land-mobile radioservices. Review of the Electrical Communications Laboratory, 16:825-873, September-October 1968. 47
    • Tatsuaki Osafune, Yuki Horita, Nestor Mariyasagayam, and Massimiliano Lenardi. Efect of decentralized congestion control on cooperative systems. International Journal of Intelligent Transportation Systems Research, 13(3):192-202, 2015. ISSN 1348-8503. doi: 10.1007/s13177-014-0095-y. URL http://dx.doi.org/10.1007/ s13177-014-0095-y. 8
    • A. Paier, R. Tresch, A. Alonso, D. Smely, P. Meckel, Y. Zhou, and N. Czink. Average downstream performance of measured ieee 802.11p infrastructure-to-vehicle links. In Communications Workshops (ICC), 2010 IEEE International Conference on, pages 1-5, May 2010. doi: 10.1109/ICCW.2010.5503934. URL http://dx.doi. org/10.1109/ICCW.2010.5503934. 42
    • Eun Kyoung Paik and Yanghee Choi. Prediction-based fast handof for mobile wlans. In Telecommunications, 2003. ICT 2003. 10th International Conference on, volume 1, pages 748-753 vol.1, 2003. doi: 10.1109/ICTEL.2003.1191503. URL http://dx.doi.org/10.1109/ICTEL.2003.1191503. 38
    • V. Paranthaman, G. Mapp, P. Shah, H. Nguyen, and A. Ghosh. Exploring markov models for the allocation of resources for proactive handover in a mobile environment. In LCN 2015: 11th International Workshop on Performance and Management of Wireless and Mobile Networks, Oct 2015. 157
    • M. Piórkowski, M. Raya, A. Lezama Lugo, P. Papadimitratos, M. Grossglauser, and J.-P. Hubaux. Trans: Realistic joint trafic and network simulator for vanets. 2007. URL http://infoscience.epfl.ch/record/114570?ln=en. 57
    • Theodore Rappaport. Wireless Communications: Principles and Practice. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2012. ISBN 0130422320. 44, 45, 46, 121, 132
    • Steele. Raymond and Hanzo. Lajos. Mobile Radio Communications. WileyIEEE Press, May 1999. URL http://eu.wiley.com/WileyCDA/WileyTitle/ productCd-047197806X,miniSiteCd-IEEE2.html. 43
    • R. Reinders, M. van Eenennaam, G. Karagiannis, and G. Heijenk. Contention window analysis for beaconing in vanets. In Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International, pages 1481-1487, 2011. doi: 10.1109/IWCMC.2011.5982757. URL http://dx.doi.org/10.1109/IWCMC.2011. 5982757. 3, 68, 69
    • T. Salam, M. Ali, and M.-R. Fida. Seamless proactive vertical handover algorithm. In Information Technology: New Generations (ITNG), 2011 Eighth International Conference on, pages 94-99, 2011. doi: 10.1109/ITNG.2011.24. URL http://dx.doi. org/10.1109/ITNG.2011.24. 39
    • F. Shaikh, G. Mapp, and A. Lasebae. Proactive policy management using tbvh mechanism in heterogeneous networks. In Next Generation Mobile Applications, Services and Technologies, 2007. NGMAST '07. The 2007 International Conference on, pages 151-157, 2007. doi: 10.1109/NGMAST.2007.4343414. URL http://dx.doi. org/10.1109/NGMAST.2007.4343414. 4, 39, 40, 70
    • Jang-Ping Sheu, Chi-Yuan Lo, and Wei-Kai Hu. A distributed routing protocol and handover schemes in hybrid vehicular ad hoc networks. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on, pages 428-435, Dec 2011. doi: 10.1109/ICPADS.2011.4. URL http://dx.doi.org/10.1109/ICPADS.2011.4. 38
    • Katrin Sjöberg, Johan Kåredal, Marie Moe, Øyvind Kristiansen, Runar Søråsen, Elisabeth Uhlemann, Fredrik Tufvesson, Knut Evensen, and Erik Ström. Measuring and using the rssi of ieee 802.11p. 2010. 97
    • P.L. Slingsby. Modelling tropospheric ducting efects on vhf/uhf propagation. Broadcasting, IEEE Transactions on, 37(2):25-34, Jun 1991. ISSN 0018-9316. doi: 10.1109/11.86959. URL http://dx.doi.org/10.1109/11.86959. 51
    • C. Sommer and F. Dressler. The dymo routing protocol in vanet scenarios. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, pages 16-20, Sept 2007. doi: 10.1109/VETECF.2007.20. URL http://dx.doi.org/10.1109/VETECF. 2007.20. 59
    • C. Sommer, Zheng Yao, R. German, and F. Dressler. Simulating the influence of ivc on road trafic using bidirectionally coupled simulators. In INFOCOM Workshops 2008, IEEE, pages 1-6, April 2008. doi: 10.1109/INFOCOM.2008.4544655. URL http://dx.doi.org/10.1109/INFOCOM.2008.4544655. 59
    • C. Sommer, R. German, and F. Dressler. Bidirectionally coupled network and road trafic simulation for improved ivc analysis. Mobile Computing, IEEE Transactions on, 10(1):3-15, 2011. ISSN 1536-1233. doi: 10.1109/TMC.2010.133. URL http: //dx.doi.org/10.1109/TMC.2010.133. 59, 99
    • Christoph Sommer and Falko Dressler. Using the right two-ray model? a measurement based evaluation of phy models in vanets. In 17th ACM International Conference on Mobile Computing and Networking (MobiCom 2011), Poster Session, Las Vegas, NV, September 2011. ACM. 45
    • Chien-Chao Tseng, Kuang-Hui Chi, Ming-Deng Hsieh, and Hung-Hsing Chang. Location-based fast handof for 802.11 networks. Communications Letters, IEEE, 9(4):304-306, 2005. ISSN 1089-7798. doi: 10.1109/LCOMM.2005.04010. URL http://dx.doi.org/10.1109/LCOMM.2005.04010. 38
    • R. Uzcategui and G. Acosta-Marum. Wave: A tutorial. Communications Magazine, IEEE, 47(5):126-133, May 2009. ISSN 0163-6804. doi: 10.1109/MCOM.2009.4939288. URL http://dx.doi.org/10.1109/MCOM.2009.4939288. 6
    • E. M. Van Eenennaam, G. Karagiannis, and G. J. Heijenk. Towards scalable beaconing in vanets. In Fourth ERCIM workshop on eMobility, Lule?, Sweden, pages 103-108, Lule?, Sweden, May 2010. Lule? University of Technology, Lule?, Sweden. URL http://eprints.eemcs.utwente.nl/18015/. 3, 38
    • M. Van Eenennaam, W.K. Wolterink, G. Karagiannis, and G. Heijenk. Exploring the solution space of beaconing in vanets. In Vehicular Networking Conference (VNC), 2009 IEEE, pages 1-8, Oct 2009. doi: 10.1109/VNC.2009.5416370. URL http://dx.doi.org/10.1109/VNC.2009.5416370. 3, 69
    • M. van Eenennaam, A. Remke, and G. Heijenk. An analytical model for beaconing in vanets. In Vehicular Networking Conference (VNC), 2012 IEEE, pages 9-16, Nov 2012. doi: 10.1109/VNC.2012.6407451. URL http://dx.doi.org/10.1109/VNC.2012. 6407451. 41
    • A. Vinel. 3gpp lte versus ieee 802.11p/wave: Which technology is able to support cooperative vehicular safety applications? Wireless Communications Letters, IEEE, 1(2):125-128, April 2012. ISSN 2162-2337. doi: 10.1109/WCL.2012.022012.120073. URL http://dx.doi.org/10.1109/WCL.2012.022012.120073. 41
    • A. Vinel, V.M. Vishnevsky, and Y. Koucheryavy. A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In GLOBECOM Workshops, 2008 IEEE, pages 1-5, Nov 2008. doi: 10.1109/GLOCOMW.2008.ECP.73. URL http://dx.doi.org/10.1109/GLOCOMW.2008.ECP.73. 40
    • A. Vinel, D. Staehle, and A. Turlikov. Study of beaconing for car-to-car communication in vehicular ad-hoc networks. In Communications Workshops, 2009. ICC Workshops 2009. IEEE International Conference on, pages 1-5, June 2009a. doi: 10.1109/ICCW.2009.5208066. URL http://dx.doi.org/10.1109/ICCW.2009.5208066. 10, 40, 102
    • Alexey Vinel, Yevgeni Koucheryavy, Sergey Andreev, and Dirk Staehle. Estimation of a successful beacon reception probability in vehicular ad-hoc networks. In Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, IWCMC '09, pages 416-420, New York, NY, USA, 2009b. ACM. ISBN 978-1-60558-569-7. doi: 10.1145/1582379. 1582470. URL http://doi.acm.org/10.1145/1582379.1582470. 10
    • S.Y. Wang, C.L. Chou, Y.H. Chiu, Y.S. Tzeng, M.S. Hsu, Y.W. Cheng, W.L. Liu, and T.W. Ho. Nctuns 4.0: An integrated simulation platform for vehicular trafic, communication, and network researches. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, pages 2081-2085, Sept 2007. doi: 10.1109/ VETECF.2007.437. URL http://dx.doi.org/10.1109/VETECF.2007.437. 59
    • E. Weingartner, H. vom Lehn, and K. Wehrle. A performance comparison of recent network simulators. In Communications, 2009. ICC '09. IEEE International Conference on, pages 1-5, June 2009. doi: 10.1109/ICC.2009.5198657. URL http: //dx.doi.org/10.1109/ICC.2009.5198657. 57
    • Chengshan Xiao, Yahong R. Zheng, and N.C. Beaulieu. Statistical simulation models for rayleigh and rician fading. In Communications, 2003. ICC '03. IEEE International Conference on, volume 5, pages 3524-3529 vol.5, May 2003. doi: 10.1109/ICC.2003.1204109. URL http://dx.doi.org/10.1109/ICC.2003.1204109. 45, 46
    • J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, volume 2, pages 1312-1321 vol.2, March 2003. doi: 10.1109/ INFCOM.2003.1208967. URL http://dx.doi.org/10.1109/INFCOM.2003.1208967. 59
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article