Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fountain, Andrew G.; Nylen, Thomas H.; Tranter, Martyn; Bagshaw, Elizabeth (2008)
Publisher: American Geophysical Union
Languages: English
Types: Article
Cryoconite holes in the McMurdo Dry Valleys are ice-lidded, thus isolating the pools of water from the atmosphere and from potential surface melt. Hourly measurements of ice and water temperature and water electrical conductivity (EC) were recorded to broadly characterize the physical and chemical changes on daily to seasonal timescales. Overall, subsurface ice/water temperatures were typically several degrees warmer than air temperatures, underscoring the importance of subsurface solar heating. At no time was surface melt observed and the holes melted from within. Detailed differences in the timing and magnitude of both temperature and EC variations during melt-out and freezeup existed between holes despite short separation distances (<1 m). We attribute these differences to small-scale changes in the optical characteristics of the ice and perhaps different efficiencies in hydrologic connections between holes. The holes melt-deepened quickly in the first half of the summer before slowing to a rate equal to the rate of surface ablation that kept hole depth constant for the remainder of the season. The relatively constant EC of the hole waters during midsummer indicates that these holes were connected to a subsurface water system that flushed the holes with fresher meltwater. The early and late season ECs are dominated by freeze-thaw effects that concentrate/dilute the solutes. We speculate that high solute concentrations imply high nutrient concentrations in early summer that may help alleviate potential stresses caused by the production of new biomass after the winter freeze.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bagshaw, E., M. Tranter, A. Fountain, K. Welch, H. J. Basagic, and B. Lyons (2007), Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica, J. Geophys. Res., 112, G04S35, doi:10.1029/2007JG000442.
    • Brandt, R. E., and S. G. Warren (1993), Solar-heating rates and temperature profiles in Antarctic snow and ice, J. Glaciol., 39, 99 - 110.
    • Bromley, A. M. (1985), Weather observations Wright Valley, Antarctica, Inf. Publ. 11, 37 pp., N.Z. Meteorol. Serv., Wellington, New Zealand.
    • Chinn, T. J. (1981), Hydrology and climate in the Ross Sea area, J. R. Soc. N. Z., 11, 373 - 386.
    • Chinn, T. J. (1985), Structure and equilibrium of the Dry Valleys glaciers, N. Z. Antarct. Rec., 6, 73 - 88.
    • Christner, B. C., B. H. Kvitko, and J. N. Reeve (2003), Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole, Extremophiles, 7, 177 - 183.
    • Collins, D. N. (1979), Quantitative determination of the subglacial hydrology of two alpine glaciers, J. Glaciol., 23, 347 - 362.
    • Doran, P. T., C. P. McKay, G. D. Clow, G. L. Dana, A. G. Fountain, T. H. Nylen, and W. B. Lyons (2002), Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986 - 2000, J. Geophys. Res., 107(D24), 4772, doi:10.1029/2001JD002045.
    • Foreman, C. M., B. Sattler, J. A. Mikucki, D. L. Porazinska, and J. C. Priscu (2007), Metabolic activity and diversity of cryoconites in Taylor Valley, Antarctica, J. Geophys. Res., 112, G04S32, doi:10.1029/ 2006JG000358.
    • Fortner, S., M. Tranter, A. Fountain, W. B. Lyons, and K. Welch (2005), The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica) and their evolution into proglacial waters, Aquat. Geochem., 11, 391 - 412.
    • Fountain, A. G., G. L. Dana, K. J. Lewis, B. H. Vaughn, and D. M. McKnight (1998), Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica, in Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, Antarct. Res. Ser., vol. 72, edited by J. C. Priscu, pp. 65 - 75, AGU, Washington, D. C.
    • Fountain, A. G., M. Tranter, T. H. Nylen, K. J. Lewis, and D. R. Mueller (2004), Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica, J. Glaciol., 50, 35 - 45.
    • Fountain, A. G., T. H. Nylen, K. J. MacClune, and G. L. Dana (2006), Glacier mass balances (1993 - 2001) Taylor Valley, McMurdo Dry Valleys, Antarctica, J. Glaciol., 52, 451 - 465.
    • Harrison, W. D., and C. F. Raymond (1976), Impurities and their distribution in temperate glacier ice, J. Glaciol., 16, 173 - 181.
    • Hayashi, M. (2004), Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion, Environ. Monit. Assess., 96, 119 - 128.
    • Hodson, A. J., P. N. Mumford, J. Kohler, and P. M. Wynn (2005), The high Arctic glacial ecosystem: New insights from nutrient budgets, Biogeochemistry, 72, 233 - 256.
    • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag (1998), A Neoproterozoic snowball Earth, Science, 281, 1342 - 1346.
    • Huner, N., G. O¨ quist, and F. Sarhan (1998), Energy balance and acclimitisation to light and cold, Trends Plant Sci. Rev., 6, 224 - 230.
    • Leslie, A. (1879), The Arctic Voyages of A.E. Nordenskjo¨ ld, 440 pp., MacMillian, London.
    • Lewis, K., G. Dana, S. Tyler, and A. Fountain (1995), The surface-energy balance of the Canada Glacier, Taylor Valley, Antarct. J. U. S., 30, 280 - 281.
    • Liston, G. E., J. G. Winther, O. Bruland, H. Elvehoey, and K. Sand (1999), Below-surface ice melt on the coastal Antarctic ice sheet, J. Glaciol., 45, 273 - 285.
    • Lyons, W. B., K. A. Welch, A. G. Fountain, G. L. Dana, B. H. Vaughn, and D. M. McKnight (2003), Surface glaciochemistry of Taylor Valley, southern Victoria Land, Antarctica and its relationship to stream chemistry, Hydrol. Processes, 17, 115 - 130.
    • Margesin, R., G. Zacke, and F. Schinner (2002), Characterization of heterotrophic microorganisms in alpine glacier cryoconite, Arct. Antarct. Alpine Res., 34, 88 - 93.
    • McIntyre, N. F. (1984), Cryoconite hole thermodynamics, Can. J. Earth Sci., 21, 152 - 156.
    • McKnight, D. M., D. K. Niyogi, A. S. Alger, A. Bomblies, P. A. Conovitz, and C. M. Tate (1999), Dry valley streams in Antarctica: Ecosystems waiting for water, Bioscience, 49, 985 - 995.
    • Mueller, D. R. (2001), A bipolar comparison of glacial cryoconite ecosystems, Masters thesis, 105 pp, McGill Univ., Montreal, Quebec, Canada.
    • Nisbet, E. G., and N. H. Sleep (2001), The habitat and nature of early life, Nature, 409, 1083 - 1091.
    • Nkem, J. N., D. H. Wall, R. A. Virginia, J. E. Barrett, E. J. Broos, D. L. Porazinska, and B. J. Adams (2006), Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica, Polar Biol., 29, 346 - 352.
    • Porazinska, D. L., A. G. Fountain, T. H. Nylen, M. Tranter, R. A. Virginia, and D. H. Wall (2004), The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica, Arct. Antarct. Alpine Res., 36, 84 - 91.
    • Sa¨wstro¨ m, C., P. Mumford, W. Marshall, A. Hodson, and J. Laybourn-Parry (2002), The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 N), Polar Biol., 25, 591 - 596.
    • Stibal, M., and M. Tranter (2007), Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard, J. Geophys. Res., 112, G04S33, doi:10.1029/2007JG000429.
    • Stibal, M., M. Sˇabacka´, and K. Kasˇtovska´ (2006), Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae, Microb. Ecol., 52, 644 - 654.
    • Taylor, G. (1916), With Scott: The Silver Lining, 448 pp., Smith, Elder and Co., London.
    • Tranter, M., (Ed.) (2003), Geochemical Weathering in Glacial and Proglacial Environments, pp. 189 - 207, Elsevier, London.
    • Tranter, M., A. G. Fountain, C. H. Fritsen, W. B. Lyons, J. C. Priscu, P. J. Statham, and K. A. Welch (2004), Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice, Hydrol. Processes, 18, 379 - 387.
    • Vincent, W. F., and C. Howard-Williams (2000), Life on snowball Earth, Science, 287, 2421.
    • Von Drygalski, V. E. (1897), Die Kryoconitlo¨ cher, in Grønland-Expedition der Gesellschaft fu¨ r Erdkunde zu Berlin 1891 - 1893, pp. 93 - 103, W. H. Kuhl, Berlin.
    • Wharton, R. A., Jr., and W. C. Vinyard (1983), Distribution of snow and ice algae in western North America, Marono, 30, 201 - 209.
    • Wharton, R. A., W. C. Vinyard, B. C. Parker, G. M. Simmons, and K. G. Seaburg (1981), Algae in cryoconite holes on Canada Glacier in southern Victorialand, Antarctica, Phycologia, 20, 208 - 211.
    • Wharton, R. A., C. P. McKay, G. M. Simmons, and B. C. Parker (1985), Cryoconite holes on glaciers, Bioscience, 35, 499 - 503.
    • Wright, C. S., and R. E. Priestly (1922), Glaciology, in British (Terra Nova) Antarctic Expedition, 1910 - 1913, edited by H. G. Lyons, pp. 1 - 581, Harrison and Sons, London.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | The Role of Resource Legacy...

Cite this article