Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier
Languages: English
Types: Article
G protein-coupled receptor 35 (GPR35) is an orphan G protein-coupled receptor (GPCR) that can be activated by kynurenic acid at high micromolar concentrations. A previously unappreciated mechanism of action of GPR35 has emerged as a Gαi/o-coupled inhibitor of synaptic transmission, a finding that has significant implications for the accepted role of kynurenic acid as a broad-spectrum antagonist of the NMDA, AMPA/kainite and α7 nicotinic receptors. In conjunction with previous findings that link agonism of GPR35 with significant reduction in nociceptive pain, GPR35 has emerged as a potential effector of regulation of mechanical sensitivity and analgesia of the Ret tyrosine kinase, and as a receptor involved in the transmission of anti-inflammatory effects of aspirin- potentially through affecting leucocyte rolling, adhesion and extravasation. Single nucleotide polymorphisms of GPR35 have linked this receptor to coronary artery calcification, inflammatory bowel disease and primary sclerosing cholangitis, while chromosomal aberrations of the 2q37.3 locus and altered copy number of GPR35 have been linked with autism, Albight's hereditary osteodystrophy-like syndrome, and congenital malformations, respectively. Herein, we present an update on both the pharmacology and potential function of GPR35, particularly pertaining to the nervous system. This review forms part of a special edition focussing on the role of lipid-sensing GPCRs in the nervous system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bischoff, E. (2004) Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int. J.
    • Impot. Res., 16, S11-S14. doi:10.1038/sj.ijir.3901208.
    • Carpenedo, R., Pittaluga, A., Cozzi, A., Attucci, S., Galli, A., Raiteri, M., Moroni, F. (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur. J. Neurosci., 13, 2141- 2147. doi: 10.1046/j.0953-816x.2001.01592.x.
    • Chassaing, N., De Mas, P., Tauber, M., Vincent, M.C., Julia, S., Bourrouillou, G., Calvas, P., Bieth, E. (2004) Molecular characterization of a cryptic 2q37 deletion in a patient with Albright hereditary osteodystrophy-like phenotype. Am. J. Med. Genet. A., 128A, 410-413. doi: 10.1002/ajmg.a.30199.
    • Chong, W.W., Lo, I.F., Lam, S.T., Wang, C.C., Luk, H.M., Leung, T.Y., Choy, K.W. (2014) Performance of chromosomal microarray for patients with intellectual disabilities/developmental delay, autism, and multiple congenital anomalies in a Chinese cohort. Mol. Cytogenet., 7, 34. doi: 10.1186/1755-8166-7-34.
    • Cosi, C., Mannaioni, G., Cozzi, A., Carlà, V., Sili, M., Cavone, L., Maratea, D., Moroni, F. (2011) Gprotein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60: 1227-1231. doi: 10.1016/j.neuropharm.2010.11.014.
    • Davidson, E.M., Coggeshall, R.E., Carlton, S.M. (1997) Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport., 8, 941- 946.
    • Deng, H., Fang, Y. (2012a) Anti-inflammatory gallic acid and wedelolactone are G protein-coupled receptor-35 agonists. Pharmacology, 89, 211-219. doi: 10.1159/000337184.
    • Deng, H., Hu, H., Fang, Y. (2011a) Tyrphostin analogs are GPR35 agonists. FEBS Lett., 585, 1957- 1962. doi: 10.1016/j.febslet.2011.05.026.
    • Deng, H., Hu, H., He, M., Hu, J., Niu, W., Ferrie, A.M., Fang, Y. (2011b) Discovery of 2-(4- methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as G protein-coupled receptor 35 (GPR35) agonists. J. Med. Chem., 54, 7385-7396. doi: 10.1021/jm200999f.
    • Deng, H., Hu, H., Ling, S., Ferrie, A.M., Fang, Y. (2012a) Discovery of natural phenols as G ProteinCoupled Receptor-35 (GPR35) Agonists. ACS Med. Chem. Lett., 3, 165-169. doi: 10.1021/ml2003058.
    • Deng, H., Hu, H., Fang, Y. (2012b) Multiple tyrosine metabolites are GPR35 agonists. Sci. Rep. 2, 373. doi: 10.1038/srep00373.
    • Deng, H., Hu, J., Hu, H., He, M., Fang, Y. (2012c) Thieno[3,2-b]thiophene-2-carboxylic acid derivatives as GPR35 agonists. Bioorg. Med. Chem. Lett., 22: 4148-4152. doi: 10.1016/j.bmcl.2012.04.057.
    • Devillard, F., Guinchat, V., Moreno-De-Luca, D., Tabet, A.C., Gruchy, N., Guillem, P., Nguyen Morel, M.A., Leporrier, N., Leboyer, M., Jouk, P.S., Lespinasse, J., Betancur, C. (2010) Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism. Am. J. Med. Genet. A., 152A, 2346-2354. doi: 10.1002/ajmg.a.33601.
    • De Winter, B.Y., van den Wijngaard, R.M., de Jonge, W.J. (2012) Intestinal mast cells in gut inflammation and motility disturbances. Biochim. Biophys. Acta, 1822, 66-73. doi: 10.1016/j.bbadis.2011.03.016.
    • DiNatale, B.C., Murray, I.A., Schroeder, J.C., Flaveny, C.A., Lahoti, T.S., Laurenzana, E.M., Omiecinski, C.J., Perdew, G.H. (2010) Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling.
    • Toxicol. Sci., 115, 89-97. doi: 10.1093/toxsci/kfq024.
    • Divorty, N., Mackenzie, A.E., Nicklin, S.A., Milligan, G. (2015) G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front. Pharmacol., 6:41. doi: 10.3389/fphar.2015.00041.
    • Dodd, S., Maes, M., Anderson, G., Dean, O.M., Moylan, S., Berk, M. (2013) Putative neuroprotective agents in neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 42, 135-145.
    • doi: 10.1016/j.pnpbp.2012.11.007.
    • Ellinghaus, D., Folseraas, T., Holm, K., Ellinghaus, E., Melum, E., Balschun, T., Laerdahl, J.K., Shiryaev, A., Gotthardt, D.N., Weismüller, T.J., Schramm, C., Wittig, M., Bergquist, A., Björnsson, E., Marschall, H.U., Vatn, M., Teufel, A., Rust, C., Gieger, C., Wichmann, H.E., Runz, H., Sterneck, M., Rupp, C., Braun, F., Weersma, R.K., Wijmenga, C., Ponsioen, C.Y., Mathew, C.G., Rutgeerts, P., Vermeire, S., Schrumpf, E., Hov, J.R., Manns, M.P., Boberg, K.M., Schreiber, S., Franke, A., Karlsen, T.H. (2013) Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology, 58, 1074-1083. doi: 10.1002/hep.25977.
    • Falk, R.E., Casas, K.A. (2007) Chromosome 2q37 deletion: clinical and molecular aspects. Am. J.
    • Med. Genet. C., 145C, 357-371. doi: 10.1002/ajmg.c.30153.
    • Fallarini, S., Magliulo, L., Paoletti, T., de Lalla, C., Lombardi, G. (2010) Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun., 398, 420-425. doi: 10.1111/j.1476- 5381.2012.02108.x.
    • Fawcett, L., Baxendale, R., Stacey, P., McGrouther, C., Harrow, I., Soderling, S., Hetman, J., Beavo, J.A., Phillips, S.C. (2000) Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc. Natl. Acad. Sci. U.S.A., 97, 3702-3707. doi: 10.1073/pnas.97.7.3702.
    • Fernández-Rebollo, E., Pérez, O., Martinez-Bouzas, C., Cotarelo-Pérez, M.C., Garin, I., Ruibal, J.L., Pérez-Nanclares, G., Castaño, L., de Nanclares, G.P. (2009) Two cases of deletion 2q37 associated with segregation of an unbalanced translocation 2;21: choanal atresia leading to misdiagnosis of CHARGE syndrome. Eur. J. Endocrinol., 160, 711-777. doi: 10.1530/EJE-08-0865.
    • Fisher, D.A., Smith, J.F., Pillar, J.S., St Denis, S.H., Cheng, J.B. (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem., 273, 15559-15564. doi: 10.1074/jbc.273.25.15559.
    • (2011) Essential role of Ret for defining non-peptidergic nociceptor phenotypes and functions in the adult mouse. Eur. J. Neurosci., 33, 1385-1400. doi: 10.1111/j.1460-9568.2011.07634.x.
    • Funke, M., Thimm, D., Schiedel, A.C., Müller, C.E. (2013) 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J. Med. Chem., 56, 5182-5197. doi: 10.1021/jm400587g.
    • Ghaziuddin, M., Burmeister, M. (1999) Deletion of chromosome 2q37 and autism: a distinct subtype? J. Autism Dev. Disord., 29, 259-263. doi: 10.1023/A:1023088207468.
    • Guo, J., Williams, D.J., Puhl3rd, H.L., Ikeda, S.R. (2008) Inhibition of N-Type Calcium Channels by Activation of GPR35, an Orphan Receptor, Heterologously Expressed in Rat Sympathetic Neurons.
    • J. Pharmacol. Exp. Ther., 324, 352-351. doi: 10.1124/jpet.107.127266.
    • Heo, B.Y., Kim, C.M., Jeong, S.T., Kim, S.J., Choi, J. Yoon, M.H. (2005) Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test. Korean J. Pain, 18, 99- 106. doi: 10.3344/kjp.2005.18.2.99.
    • Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T.D.Y., Stonich, D., Su, Y., Caron, M.G., Zhao, P., Abood, M.E., Barak, L.S. (2010) Antagonists for the Orphan Receptor GPR35. Sanford-Burnham Centre for Chemical Genomics - Probe Report 1 & 2 Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T.D.Y., Stonich, D., Su, Y., Zhao, P., Caron, M.G., Abood, M.E., Barak. L.S (2011) Antagonists for the Orphan Receptor GPR35. Sanford-Burnham Centre for Chemical Genomics - Probe Report 3 Hilger, A., Schramm, C., Pennimpede, T., Wittler, L., Dworschak, G.C., Bartels, E., Engels, H., Zink, A.M., Degenhardt, F., Müller, A.M., Schmiedeke, E., Grasshoff-Derr, S., Märzheuser, S., Hosie, S., Holland-Cunz, S., Wijers, C.H., Marcelis, C.L., van Rooij, I.A., Hildebrandt, F., Herrmann, B.G., Nöthen, M.M., Ludwig, M., Reutter, H., Draaken, M. (2013) De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with VATER/VACTERL association. Eur. J. Hum. Genet., 21, 1377- 1382. doi: 10.1038/ejhg.2013.58.
    • Hilmas, C., Pereira, E.F., Alkondon, M., Rassoulpour, A., Schwarcz, R., Albuquerque, E.X. (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases nonalpha7 nicotinic receptor expression: physiopathological implications. J. Neurosci., 21, 7463-7473.
    • Horikawa, Y., Oda, N., Cox, N.J., Li, X., Orho-Melander, M., Hara, M., Hinokio, Y., Lindner, T.H., Mashima, H., Schwarz, P.E., del Bosque-Plata, L., Horikawa, Y., Oda, Y., Yoshiuchi, I., Colilla, S., Polonsky, K.S., Wei, S., Concannon, P., Iwasaki, N., Schulze, J., Baier, L.J., Bogardus, C., Groop, L., Boerwinkle, E., Hanis, C.L., Bell, G.I. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet., 26, 163-175. doi:10.1038/79876.
    • Lugnier, C., Schoeffter, P., Le Bec, A., Strouthou, E., Stoclet, J.C. (1986) Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem. Pharmacol., 35, 1743- 1751. doi: 10.1016/0006-2952(86)90333-3.
    • Mackenzie, A.E., Lappin, J.E., Taylor, D.L., Nicklin, S.A., Milligan, G. (2011) GPR35 as a Novel Therapeutic Target. Front. Endocrinol. (Lausanne), 2:68. doi: 10.3389/fendo.2011.00068.
    • Mackenzie A.E., Caltabiano G., Kent T.C., Jenkins L., McCallum J.E., Hudson B.D., Nicklin, S.A., Fawcett, L., Markwick, R., Charlton, S.J., Milligan, G. (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol.
    • Pharmacol., 85, 91-104. doi: 10.1124/mol.113.089482.
    • Malmberg, A.B., Yaksh, T.L. (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J. Pharmacol. Exp. Ther., 263, 136-146.
    • Malmberg, A.B., Yaksh, T.L. (1993) Pharmacology of the spinal action of ketorolac, morphine, ST91, U50488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology, 79, 270-281.
    • (2014) Cutting Edge: GPR35/CXCR8 is the Receptor of the Mucosal Chemokine CXCL17. J.
    • Immunol., 194, 29-33. doi: 10.4049/jimmunol.1401704.
    • Martindale, J., Bland-Ward, P.A., Chessell, I.P. (2001) Inhibition of C-fibre mediated sensory transmission in the rat following intraplantar formalin. Neurosci. Lett., 316, 33-36.
    • doi:10.1016/S0304-3940(01)02362-X.
    • McCall, W.D., Tanner, K.D., Levine, J.D. (1996) Formalin induces biphasic activity in C-fibers in the rat. Neurosci. Lett., 208, 45-48.
    • Michel, M.C., Wieland, T., Tsujimoto, G. (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch. Pharmacol., 379, 385-388. doi: 10.1007/s00210-009-0395- y.
    • O'Dowd, B.F., Nguyen, T., Marchese, A., Cheng, R., Lynch, K.R., Heng, H.H. Kolakowski, L.F.Jr, George, S.R. (1998). Discovery of three novel G-protein-coupled receptor genes. Genomics, 47, 310- 313. doi: 10.1006/geno.1998.5095.
    • Vermeulen, W., De Man, J.G., Pelckmans, P.A., De Winter, B.Y. (2014) Neuroanatomy of lower gastrointestinal pain disorders. World J. Gastroenterol., 20, 1005-1120. doi: 10.3748/wjg.v20.i4.1005.
    • Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H., Ling, L. (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem., 281, 22021-22018. doi: 10.1074/jbc.M603503200 Wheeler, D.B., Randall, A., Tsien, R.W. (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science, 264, 107-111. doi: 10.1126/science.7832825.
    • Xu, X., Weksler-Zangen, S., Pikarsky, A., Pappo, O., Wengrower, D., Bischoff, S.C., Pines, M., Rivkind, A., Goldin, E., Levi-Schaffer, F. (2002) Mast cells involvement in the inflammation and fibrosis development of the TNBS-induced rat model of colitis. Scand. J. Gastroenterol., 37, 330-337.
    • doi: 10.1080/003655202317284246.
    • Yang, S.K., Hong, M., Choi, H., Zhao, W., Jung, Y., Haritunians, T., Ye, B.D., Kim, K.J., Park, S.H., Lee, I., Kim, W.H., Cheon, J.H., Kim, Y.H., Jang, B.I., Kim, H.S., Choi, J.H., Koo, J.S., Lee, J.H., Jung, S.A., Shin, H.D., Kang, D., Youn, H.S., Taylor, K.D., Rotter, J.I., Liu, J., McGovern, D.P., Song, K. (2015) Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans. Inflamm. Bowel Dis., 21, 1-7. doi: 10.1097/MIB.0000000000000268.
    • Yang, Y., Lu, J.Y., Wu, X., Summer, S., Whoriskey, J., Saris, C., Reagan, J.D (2010) G-proteincoupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium.
    • Pharmacology, 86, 1-5. doi: 10.1159/000314164.
    • Yang, Y., Fu, A., Wu, X., Reagan, J.D. (2012) GPR35 is a target of the loop diuretic drugs bumetanide and furosemide. Pharmacology, 89, 13-17. doi: 10.1159/000335127.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    G protein-coupled receptor 35 mediates human saphenous vein vascular smooth muscle cell migration and endothelial cell proliferation


    GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses.


    Identification of novel, species selective agonists of the G protein-coupled receptor GPR35 that promote recruitment of ?-arrestin-2 and activate G?13


    Kynurenic Acid in the Digestive System?New Facts, New Challenges


    G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease


    Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα13 and β-arrestin-2


    Multiple tyrosine metabolites are GPR35 agonists


    High-Throughput Identification and Characterization of Novel, Species-selective GPR35 Agonists


    Kynurenic Acid Triggers Firm Arrest of Leukocytes to Vascular Endothelium under Flow Conditions*


    Targeting of the Orphan Receptor GPR35 by Pamoic Acid: A Potent Activator of Extracellular Signal-Regulated Kinase and β-Arrestin2 with Antinociceptive ActivityS⃞


    Discovery of 2-(4-Methylfuran-2(5H)-ylidene)malononitrile and Thieno[3,2-b]thiophene-2-carboxylic Acid Derivatives as G Protein-Coupled Receptor 35 (GPR35) Agonists


    Antagonists of GPR35 Display High Species Ortholog Selectivity and Varying Modes of Action

  • BioEntity Site Name
    2q37Protein Data Bank

Share - Bookmark

Download from

Funded by projects

  • WT

Cite this article