LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:

Classified by OpenAIRE into

ACM Ref: Hardware_GENERAL
Supercapacitors are likely to be adopted as power sources for wearable sensors; in particular where the sensor mechanism relies on energy harvesting. A specific advantage of supercapacitors over traditional batteries is their performance over large numbers of discharge cycles. Likewise, in the case of wearable devices, it is essential to efficiently manage the available power. Supercapacitors exhibit a small recovery effect, in part due to ion diffusion. Modelling this effect allows an increase in available energy to be realized following the sleep times during a discharge cycle thus increasing the time between charging for wearables. This paper presents the increase in useful lifetime that can be achieved via the recovery effect in a typical wearable device.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article