LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QC, TK

Classified by OpenAIRE into

arxiv: Condensed Matter::Materials Science
Identifiers:doi:10.1063/1.125750
Low-temperature electrical properties of two-dimensional hole gases (2-DHGs) in Si/Si0.8Ge0.2/Si inverted modulation-doped structures have been investigated at different hole densities using a metal semiconductor gate sputtered on top of these structures. The 2-DHG which is supplied to the inverted interface of Si/SiGe/Si quantum well by a Si boron-doped layer spatially grown beneath the alloy, was controlled in the range of 1.5–7.8×1011 cm–2 hole density by biasing the top gate. With increasing 2-DHG sheet density, the hole wave function of these structures expands and moves away from inverted interface, consequently the mobility enhances. These results may be understood theoretically by elaborating the role of interface charge, roughness, and alloy scattering mechanisms in limiting the mobility of holes at the inverted interface.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 P. T. Coleridge, R. L. Williams, Y. Feng, and P. Zawadzki, Phys. Rev. B 56, 12764 ~1997!.
    • 2 T. E. Whall, Thin Solid Films 294, 160 ~1997!.
    • 3 S. Verdonckt-Vandebroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, IEEE ED 41, 90 ~1994!.
    • 4 R. J. P. Lander, M. J. Kearney, A. I. Horrell, E. H. C. Parker, P. J. Phillips, and T. E. Whall, Semicond. Sci. Technol. 12, 1064 ~1997!.
    • 5 M. A. Sadeghzadeh, C. P. Parry, P. J. Phillips, E. H. C. Parker, and T. E. Whall, Appl. Phys. Lett. 74, 579 ~1999!.
    • 6 Y. Guldner, J. M. Berroir, J. P. Vieren, M. Voos, I. Sagnes, P. A. Badoz, P. Warren, and D. Dutartre, Phys. Rev. B 48, 12312 ~1993!.
    • 7 C. J. Emeleus, M. A. Sadeghzadeh, P. J. Phillips, E. H. C. Parker, T. E. Whall, M. Pepper, and A. G. R. Evans, Appl. Phys. Lett. 70, 1870 ~1997!.
    • 8 T. Tesuka, T. Hatakeyama, S. Imai, N. Sugiyama, and A. Kurobe, Semicond. Sci. Technol. 13, 1477 ~1988!.
    • 9 M. A. Sadeghzadeh, O. A. Mironov, C. J. Emeleus, C. P. Parry, P. J. Phillips, E. H. C. Parker, and T. E. Whall, Acta Phys. Pol. A 94, 503 ~1998!, Proceedings of XXVII Intern. School on Physics of Semiconducting Compounds, Jaszowiec ~1998!.
    • 10 F. Scha¨ffler, Semicond. Sci. Technol. 12, 1515 ~1997!.
    • 11 G. Hionis, and G. P. Triberis, Superlattices Microstruct. 22, 285 ~1997!.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article