LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Do, Hainam; Besley, Nicholas A. (2012)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Chemical Physics, Astrophysics::Galaxy Astrophysics
Identifiers:doi:10.1063/1.4755994
Identifying the energy minima of molecular clusters is a challenging problem. Traditionally, search algorithms such as simulated annealing, genetic algorithms, or basin hopping are usually used in conjunction with empirical force fields. We have implemented a basin hopping search algorithm combined with density functional theory to enable the optimization of molecular clusters without the need for empirical force fields. This approach can be applied to systems where empirical potentials are not available or may not be sufficiently accurate. We illustrate the effectiveness of the method with studies on water, methanol, and water + methanol clusters as well as protonated water and methanol clusters at the B3LYP+D/6-31+G* level of theory. A new lowest energy structure for H+(H2O)7 is predicted at the B3LYP+D/6-31+G* level. In all of the protonated mixed water and methanol clusters, we find that H+ prefers to combine with methanol rather than water in the lowest-energy structures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 20M. T. Oakley and R. J. Wheatley J. Chem. Phys. 130, 34110 (2009).
    • 21M. T. Oakley, H. Do, and R. J. Wheatley Fluid Phase Equilib. 290, 48 (2009).
    • 22M. T. Oakley; H. Do, J. D. Hirst, and R. J. Wheatley J. Chem. Phys. 134, 114518 (2011).
    • 23D. T. Tran and R. L. Johnston Proc. R. Soc. A 467, 2004 (2010).
    • 24G. Johannesson, T. Bligaar, H. Ruban, H. Skriver, K. Jacobsen, and J. Norskov Phys. Rev. Lett. 88, 255506 (2002).
    • 25A. N. Alexandrova and A. I. Boldyrev J. Chem. Theory Comput. 1, 566 (2005).
    • 26A. N. Alexandrova J. Phys. Chem. A 114, 12591 (2010).
    • 27R. Ferrando, J. Jellinek, and R. L. Johnston Chemical Reviews 108, 846 (2006).
    • 28S. Heiles, A. J. Logsdail, R. Schafer, and R. L. Johnston Nanoscale 4, 1109 (2012).
    • 29B. Paizs, G. Fogarasi, and P. Pulay J. Chem. Phys. 109, 6571 (1998).
    • 30H. G. Kim, S. K. Choi, and H. M. Lee J. Chem. Phys. 128, 144702 (2008).
    • 31(a) C. J. Tsai and K. D. Jordan J. Chem. Phys. 95, 3850 (1991). (b) D. J. Wales and M. P. Hodges Chem. Phys. Lett. 286, 65 (1998). (c) M. P. Hodges and D. J. Wales Chem. Phys. Lett. 324, 279 (2000). (d) S. Maheshwary, N. Pate, N. Sathyamurthy, A. D. Kulkarni, and S. R. Gadre J. Phys. Chem. A 105, 10525 (2001). (e) T. James, D. J. Wales, and J. Hernandez-Rojas Chem. Phys. Lett. 415, 302 (2005). (f) J. Cui, H. Liu, and K. D. Jordan J. Chem. Phys. 110, 18872 (2006). (g) P. T. Kiss and A. Baranyai J. Chem. Phys. 131, 204310 (2009). (h) G. L. Holden and D. L. Freeman J. Phys. Chem. B 115, 4725 (2011). (i) S. Shanker and P. Bandyopadhyay J. Phys. Chem. A 115, 11866 (2011).
    • 32R. Ludwig Angew. Chem. Int. Ed. 40, 1808 (2001).
    • 33(a) U. Buck and J. Siebers J. Chem. Phys. 108, 20 (1997). (b) F. C. Hagemeister, C. J. Gruenloh, and T. S. Zwier J. Phys. Chem. A 102, 82 (1998). (c) S. L. Boyd and R. J. Boyd J. Chem. Theory Comput. 3, 54 (2007). (d) M. M. Pires and V. F. DeTuri J. Chem. Theory Comput. 3, 1073 (2007). (e) J. David, D. Guerra, and A. Restrepo J. Phys. Chem. A 113, 10167 (2009).
    • 34(a) B. S. Jursic J. Mol. Struct. (THEOCHEM) 466, 203 (1999). (b) E. Eudes and F. S. Canuto Int. J. Quantum Chem. 102, 554 (2005). (c) E. Ruckenstein, I. Shulgin, and J. L. Tilson J. Phys. Chem. A 109, 807 (2005). (d) E. Eudes and F. S. Canuto Int. J. Quantum Chem 104, 808 (2005).
    • 35(a) S. J. Suresh, A. l. Prabhu, and A. Arora J. Chem. Phys. 126, 134502 (2007). (b) M. M. Pires and V. F. DeTuri J. Chem. Theory Comput. 3, 1073 (2007). (c) A. Krishtal, P. Senet, and C. V. Alsenoy J. Chem. Theory Comput. 4, 426 (2008). (d) J. David, D. Guerra, and A. Restrepo J. Phys. Chem. A 113, 10167 (2009).
    • 36(a) N. Nishi, K. Koga, C. Ohshima, K. Yamamoto, U. Nagashima, and K. Nagami J. Am. Chem. Soc. 110, 5246 (1988). (b) N. Nishi, K. Yamamoto J. Am. Chem. Soc. 109, 7353 (1987). (c) S. Dixit, J. Crain, W. Poon, J. Finney, and A. Soper Nature 416, 829 (2002).
    • 37L. Gonzalez, O. Mo, and M. Yanez J. Chem. Phys. 109, 139 (1998).
    • 38S. S. Xantheas J. Chem. Phys. 102, 4504 (1995).
    • 39A. Mandal, M. Prakash, R. M. Kumar, R. Parthasarathi, and V. Subramanian J. Phys. Chem. A 113, 2250 (2010).
    • 40Y Shao., L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill; R. A. DiStasio Jr, R. C. Lochan, T. Wang, G. J. O. Beran; N. A. Besley, J. M. Herbert, C. Y. Lin, T. V. Voorhis, S.-H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney; A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman; F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon Phys. Chem. Chem. Phys. 2006, 8, 3172-3191.
    • 41P. Qian, W. Song, L. Lu, and Z. Yang Int. J. Quantum Chem 110, 1923 (2010).
    • 42R. J. Wawak, M. M. Wimmer, and H. A. Scheraga J. Phys. Chem. 96, 5138 (1992).
    • 43F. Li, L. Wang, J. Zhao, J. R. Xie, K. E. Riley, and Z. Chen Theor. Chem. Acc. 130, 341 (2011).
    • 44A. D. Becke J. Chem. Phys. 98, 1372 (1993).
    • 45A. D. Becke J. Chem. Phys. 98, 5648 (1993).
    • 46S. Grimme, J. Antony, S. Ehrlich, and H. Krieg J. Chem. Phys. 132, 154104 (2010).
    • 47N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, and E. Teller J. Chem. Phys. 21, 1087 (1953).
    • 48K. Liu, M. G. Brown, C. Carter, R. J. Saykally, J. K. Gregory, and D. C. Clary Nature 381, 501 (1996).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article