LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: QC, QD
The structures of a variety of disordered materials were determined using the technique\ud of total neutron scattering.\ud The synthesis of various polymorphs of Ga2O3 and related materials was investigated\ud and the structures of the hitherto uncharacterised polymorphs were examined in detail.\ud The structure of y-Ga2O3 was found to be a cubic defect spinel with four partially\ud occupied Ga sites, however, the octahedral Ga coordination environments were found to\ud be distorted from the average cubic structure. The cation distribution in y-Ga2O3 was\ud found to depend on particle size and synthesis method. Examination of the structure of\ud E-Ga2O3 revealed that it is analogous to a disordered, hexagonal form of E-Fe2O3. The\ud poorly crystalline product of the thermal decomposition of Ga(NO3)3.9H2O was found\ud to be a nanocrystalline modification of E-Ga2O3, rather than a distinct phase with the\ud bixbyite structure, as had been previously reported. The structure of a novel gallium\ud oxyhydroxide, Ga5O7(OH), was determined to be analogous to tohdite, Al5O7(OH), and\ud in its thermal decomposition pathway was revealed a new Ga2O3 polymorph:\ud orthorhombic K-Ga2O3.\ud A solvothermal synthetic route to spinel structured ternary gallium oxides, of general\ud formula MxGa3-xO4-y, was developed. The structures of the materials where M = Zn or\ud Ni were found to be consistent with those previously published. The materials where\ud M = Co or Fe possess novel, oxygen-deficient compositions and exhibit interesting\ud magnetic behaviour.\ud A series of cerium bismuth oxides of formula Ce1-xBixO2-1/2x were found to adopt the\ud cubic fluorite structure with significant local distortion due to the preference of Bi3+ for\ud an asymmetric coordination environment. A sodium cerium titanate pyrochlore was also\ud structurally characterised and it was determined that, due to the presence of three\ud different cations on the A site, the local structure required a model with reduced\ud symmetry.\ud In situ neutron scattering experiments were carried out on amorphous zeolite precursor\ud gels in the presence of the reaction liquid. These experiments revealed structural\ud features unique to the gel, and proved that the gel undergoes irreversible structural\ud changes on drying. Preliminary analysis of the gel structure indicated that the Na+\ud cations play an important role in the development of the ordered zeolitic framework,\ud and revealed no strong evidence for the existence of discrete structural building units in\ud the gel.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baerlocher, C.; McCusker, L. B.; Olson, D. H., Atlas of Zeolite Framework Types. 6th ed.; Elsevier: Amsterdam, 2007.
    • Barrer, R. M.; Baynham, J. W., J. Chem. Soc. 1956, 2882 Milton, R. M.,A. U.S. Patent 2,882,243, 1959.
    • Milton, R. M.,X. U.S. Patent 2,882,244, 1959.
    • Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.; Kirchner, R. M.; Smith, J. V., Nature 1978, 271, 512.
    • Bibby, D. M.; Milestone, N. B.; Aldridge, L. P., Nature 1979, 280, 664.
    • Am. Chem. Soc. 1982, 104, 1146.
    • Parise, J. B., J. Chem. Soc., Chem. Commun. 1985, 606.
    • Ferey, G., C.R. Acad. Sci., Ser. IIc: Chim. 1998, 1, 1.
    • Cheetham, A. K.; Férey, G.; Loiseau, T., Angew. Chem. Int. Ed. 1999, 38, 3268.
    • Cundy, C. S.; Cox, P. A., Chem. Rev. 2003, 103, 663.
    • Cundy, C. S.; Cox, P. A., Microporous Mesoporous Mater. 2005, 82, 1.
    • Kinrade, S. D.; Swaddle, T. W., Inorg. Chem. 1989, 28, 1952.
    • Harris, R. K.; SamadiMaybodi, A.; Smith, W., Zeolites 1997, 19, 147.
    • Breck, D. W., J. Chem. Educ. 1964, 41, 678.
    • Kerr, G. T., J. Phys. Chem. 1966, 70, 1047.
    • 1971; Vol. 101, p 20.
    • Angell, C. L.; Flank, W. H., In ACS Symp. Ser., Katzer, J. R., Ed. 1977; Vol. 40, p 194.
    • Nicolle, M. A.; Renzo, F. D.; Fajula, F.; Espiau, P.; Courieres, T. d., In Proc. 9th Int. Zeolite Conf., Ballmoos, R. v.; Higgins, J. B.; Treacy, M. M. J., Eds.
    • Butterworth-Heinemann: Boston, 1993; p 313.
    • Mintova, S.; Olson, N. H.; Bein, T., Angew. Chem. Int. Ed. 1999, 38, 3201.
    • Dorset, D. L., Z. Kristallogr. 2010, 226, 18.
    • Phys. Chem. B 2004, 108, 8208.
    • Wakihara, T.; Kohara, S.; Sankar, G.; Saito, S.; Sanchez-Sanchez, M.; Overweg, A. R.; Fan, W.; Ogura, M.; Okubo, T., Phys. Chem. Chem. Phys. 2006, 8, 224.
    • Wakihara, T.; Fan, W.; Suzuki, Y.; Ogura, M.; Kohara, S.; Sankar, G.; Okubo, T., In Stud. Surf. Sci. Catal., Ruren Xu, Z. G. J. C.; Wenfu, Y., Eds. Elsevier: 2007; Vol. Volume 170, pp 506.
    • Lowenstein, W., Am. Mineral. 1954, 39, 92.
    • Soc. 2012, 134, 11542.
    • Usui, K.; Abe, K.; Tokita, T.; Imafuku, S.; Ogawa, M., In Chemistry of Microporous Crystals, Inui, T.; Namba, S.; Tatsumi, T., Eds. 1991; Vol. 60, pp 21.
    • Dokter, W. H.; Beelen, T. P. M.; Vangarderen, H. F.; Vansanten, R. A.; Bras, W.; Derbyshire, G. E.; Mant, G. R., J. Appl. Crystallogr. 1994, 27, 901.
    • Aerts, A.; Follens, L. R. A.; Haouas, M.; Caremans, T. P.; Delsuc, M. A.; Loppinet, B.; Vermant, J.; Goderis, B.; Taulelle, F.; Martens, J. A.; Kirschhock, C. E. A., Chem. Mater. 2007, 19, 3448.
    • Follens, L. R. A.; Aerts, A.; Haouas, M.; Caremans, T. P.; Loppinet, B.; Goderis, B.; Vermant, J.; Taulelle, F.; Martens, J. A.; Kirschhock, C. E. A., Phys. Chem. Chem. Phys. 2008, 10, 5574.
    • Depla, A.; Verheyen, E.; Veyfeyken, A.; Gobechiya, E.; Hartmann, T.; Schaefer, R.; Martens, J. A.; Kirschhock, C. E. A., Phys. Chem. Chem. Phys. 2011, 13, 13730.
    • Walton, R. I.; Smith, R. I.; O'Hare, D., Microporous Mesoporous Mater. 2001, 48, 79.
    • Ceram. Soc. 2011, 94, 3532.
    • Madja, D.; Walton, R. I.; Hannon, A. C., 2006.
    • Ikeda, T.; Izumi, F.; Kodaira, T.; Kamiyama, T., Chem. Mater. 1998, 10, 3996.
    • Benmore, C. J.; Soper, A. K. Rutherford Appleton Laboratory Technical Reports, RAL-TR-1998-006, 1998.
    • Heenan, R. K.; Penfold, J.; King, S. M., J. Appl. Crystallogr. 1997, 30, 1140.
    • Sci. Instrum. 2010, 81, 033905.
    • McCormick, A. V.; Bell, A. T.; Radke, C. J., J. Phys. Chem. 1989, 93, 1741.
    • Huang, Y.; Jiang, Z., Microporous Mater. 1997, 12, 341.
    • Dutta, P. K.; Del Barco, B., J. Phys. Chem. 1988, 92, 354.
    • Hannon, A. C., PhD. Thesis, University of Reading, 1989.
    • Jarvie, H. P.; King, S. M., Environ. Sci. Technol. 2007, 41, 2868.
    • Rev. B 2006, 74.
    • Elliott, S. R., J. Phys.: Condens. Matter 1992, 4, 7661.
    • Jin, W.; Kalia, R. K.; Vashishta, P.; Rino, J. P., Phys. Rev. B 1994, 50, 118.
    • Jensen, K. M. O.; Christensen, M.; Juhas, P.; Tyrsted, C.; Bojesen, E. D.; Lock, N.; Billinge, S. J. L.; Iversen, B. B., J. Am. Chem. Soc. 2012, 134, 6785.
    • Tyrsted, C.; Ørnsbjerg Jensen, K. M.; Bøjesen, E. D.; Lock, N.; Christensen, M.; Billinge, S. J. L.; Brummerstedt Iversen, B., Angew. Chem. Int. Ed. 2012, 51, 9030.
    • White, C. E.; Provis, J. L.; Proffen, T.; van Deventer, J. S. J., AlChE J. 2012, 58, 2241.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article