LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Doctoral thesis
Subjects: TP, QD0241
This thesis is concerned with the preparation, and subsequent investigation of, titanium dioxide (TiO2) nanomaterials and their ability to remove phenol from gas streams for application towards the abatement of polluted land fill gas (LFG). Using the well documented ability of TiO2 to excite an electron by UV light, phenol was removed from gas streams to investigate the efficacy of TiO2 nanomaterials. Phenol was chosen as a representative VOC but the catalysts were proven to also remove four other organic compounds during gas phase photocatalysis. It was found that in loadings of 1 mol % the degradation of phenol could be increased relative to pristine TiO2 nanofibres. The activity of six metal oxide dopants were fairly compared to one another where it was found that cobalt doped TiO2 showed very high activity, more so than P25 powder. Furthermore, mono-metallic cobalt nanomaterials were shown to degrade phenol in the gas phase, however, more studies are required on these materials.\ud Supports for TiO2 were investigated in order to provide a more practical catalyst for industrial continuous flow reactors. These included novel zeolite:titania composites which were fibrous, non-woven mats of these materials were prepared by electrospinning and were shown to effectively remove phenol from polluted gas stream.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Euro Legislation, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004L0042:EN:NOT. 2004
    • 2. Government Legislation, http://www.legislation.gov.uk/uksi/2005/2773/made, 2005.
    • 3. Georg Schwedt, The Essential Guide to Environmental Chemistry, Wiley, 1st edn., 2002.
    • 4. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem Rev, 1995, 95, 69-96.
    • 5. Siemens, http://www.environmental-expert.com/articles/former-manufactured-gasplant-mgp-chooses-siemens-and-activated-carbon-system-for-voc-removal-202369, 2013
    • 6. PpTek LTD, http://www.pptek.co.uk/index.php, 2013
    • 7. A. Berenjian, N. Chan, and H. J. Malmiri, Am. J. Biochem. Biotechnol., 2012, 8, 220- 229.
    • 8. R. Feynman, http://www.zyvex.com/nanotech/feynman.html 1959.
    • 9. D. McMullan, Scanning, 1995, 17, 175-185.
    • 10. Z. L. Wang, Adv. Mater., 2003, 15, 1497-1514.
    • 11. T. Ando, Nanotechnology, 2012, 23, 062001.
    • 12. H. Yang, Y. Wang, S. Lai, H. An, Y. Li, and F. Chen, J. Food Sci., 2007, 72, R65- R75.
    • 13. Nobel Prize in Physics 1986, _http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/, 1986.
    • 14. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl,Pubaln.dOnlRin.e E. Smalley, 14 Novemb. 1985 Doi101038318162a0, 1985, 318, 162-163.
    • 15. S. Iijima, Publ. Online 07 Novemb. 1991 Doi101038354056a0, 1991, 354, 56-58.
    • 16. Euro Legislation, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32011H0696:EN:NOT, 2011
    • 17. R. A. Zsigmondy, http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1925/zsigmondylecture.pdf 1925.
    • 18. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science, 2001, 293, 76-79.
    • 19. C. Rutherglen and P. Burke, Nano Lett., 2007, 7, 3296-3299.
    • 20. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature, 2006, 441, 489- 493.
    • 21. X. Zong, H. Bien, C. Chung, L. Yin, D. Fang, B. Hsiao, B. Chu, and E. Entcheva, Biomaterials, 2005, 26, 5330-5338.
    • 22. B. A. Kairdolf, A. M. Smith, T. H. Stokes, M. D. Wang, A. N. Young, and S. Nie, Annu. Rev. Anal. Chem., 2013, 6, 143-162.
    • 23. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, Nat. Biotechnol., 2004, 22, 969-976.
    • 24.W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum., 2003, 74, 3597.
    • 25. S. Sharma and M. Madou, Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 2012, 370, 2448-2473.
    • 26. Z. Dai, L. Xu, G. Duan, T. Li, H. Zhang, Y. Li, Y. Wang, Y. Wang, and W. Cai, Sci. Reports, 2013, 3.
    • 27. S. Rather, N. Mehrajuddin, R. Zacharia, S. Hwang, A. Kim, and K. Nahm, Int. J. Hydrog. Energy, 2009, 34, 961-966.
    • 28. A. Mishra, S. Banerjee, S. K. Mohapatra, O. A. Graeve, and M. Misra, Nanotechnology, 2008, 19, 445607.
    • 29. R. Kler and Q. Chen, Un-Published. Results, 2012.
    • 30. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, and J. Shen, J. Power Sources, 2007, 165, 739-756.
    • 31. J. Lu, C. J. Brigham, C. S. Gai, and A. J. Sinskey, Appl. Microbiol. Biotechnol., 2012, 96, 283-297.
    • 32. S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, Acs Nano, 2010, 4, 1259- 1278.
    • 33. C. Wang, M. Shen, H. Huo, H. Ren, and M. Johnson, Aip Adv., 2011, 1, 042124- 042124.
    • 34. O. Carp, Prog. Solid State Chem., 2004, 32, 33-177.
    • 35. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, Phys. Rev. B, 1994, 49, 14435.
    • 36. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science, 1992, 256, 1425-1427.
    • 37. M. Perez, Scr. Mater., 2005, 52, 709-712.
    • 38. M. G. Rossmann and E. Arnold, in International Tables for Crystallography, ed. U. Shmueli, International Union of Crystallography, Chester, England, 1st edn., 2006, vol. B, pp. 235-263.
    • 39. J. Tao, T. Luttrell, and M. Batzill, Nat. Chem., 2011, 3, 296-300.
    • 40. A. Rao, M. Schoenenberger, E. Gnecco, T. Glatzel, E. Meyer, D. Brändlin, and L. Scandella, J. Phys. Conf. Ser., 2007, 61, 971-976.
    • 41. Y.-Y. Kim, K. Ganesan, P. Yang, A. N. Kulak, S. Borukhin, S. Pechook, L. Ribeiro, R. Kröger, S. J. Eichhorn, S. P. Armes, B. Pokroy, and F. C. Meldrum, Nat Mater, 2011, 10, 890-896.
    • 42. K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, Kasetsart Jnat Sci, 2008, 42, 357-361.
    • 43. T. Akita, P. Lu, S. Ichikawa, K. Tanaka, and M. Haruta, Surf. Interface Anal., 2001, 31, 73-78.
    • 44. H. Tan, J. Verbeeck, A. Abakumov, and G. Van Tendeloo, Ultramicroscopy, 2012, 116, 24-33.
    • 45. Z. L. Wang, J. S. Yin, and Y. D. Jiang, Micron, 2000, 31, 571-580.
    • 46. F. Cosandey, D. Su, M. Sina, N. Pereira, and G. G. Amatucci, Micron, 2012, 43, 22- 29.
    • 47. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett., 1984, 53, 2339-2342.
    • 48. M. Ghaffari, H. Huang, O. K. Tan, and M. Shannon, CrystEngComm, 2012, 14, 7487- 7492.
    • 49. W. Göpel, J. A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J. A. Schäfer, and G. Rocker, Surf. Sci., 1984, 139, 333-346.
    • 50. J. Lüning, J. Rockenberger, S. Eisebitt, J. E. Rubensson, A. Karl, A. Kornowski, H. Weller, and W. Eberhardt, Solid State Commun., 1999, 112, 5-9.
    • 51. C. L. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C. L. Chang, and J. H. Guo, Phys. Rev. B, 2004, 70, 195325.
    • 52. M. R. H. M. Haris, S. Kathiresan, and S. Mohan, Pharma Chem., 2010, 2, 316-323.
    • 50. L. Atkinson, Masters Project Presentation, University of Sussex, 2008.
    • 54. R. López and R. Gómez, J. Sol-Gel Sci. Technol., 2012, 61, 1-7.
    • 55. M. Anpo, Pure Appl. Chem., 2000, 72, 1787-1792.
    • 56. J. Hwang, E.-G. Kim, J. Liu, J.-L. Brédas, A. Duggal, and A. Kahn, J. Phys. Chem. C, 2007, 111, 1378-1384.
    • 57. Y. Park, Y. So, S. J. Chung, and J. I. Jin, J.-Korean Phys. Soc., 2000, 37, 59-63.
    • 58. D. Gall, M. Städele, K. Järrendahl, I. Petrov, P. Desjardins, R. T. Haasch, T. Y. Lee, and J. E. Greene, Phys. Rev. B, 2001, 63, 125119.
    • 56. University of Cambridge, Fermi Dirac Distrib., http://www.doitpoms.ac.uk/tlplib/semiconductors/fermi.php, 2013_
    • 57. Food Standards Agency, http://www.food.gov.uk/policyadvice/additivesbranch/enumberlist#.UG2R8U2HLcJ, 2012
    • 61. E. Keidel, Farben-Ztg., 1929, 34, 1242.
    • 62. A. Fujishima and K. Honda, Publ. Online 07 July 1972 Doi101038238037a0, 1972, 238, 37-38.
    • 63.H. Honda, A. Ishizaki, R. Soma, K. Hashimoto, and A. Fujishima, J Illum Eng Soc, 1998, 42.
    • 64.S. N. Frank and A. J. Bard, J. Am. Chem. Soc., 1977, 99, 303-304.
    • 65.S. Ye, Q. Tian, X. Song, and S. Luo, J. Photochem. Photobiol. Chem., 2009, 208, 27- 35.
    • 66.W. H. Baur, Acta Crystallogr., 1961, 14, 214-216.
    • 67.D. T. Cromer and K. Herrington, J. Am. Chem. Soc., 1955, 77, 4708-4709.
    • 68.S.-D. Mo and W. Y. Ching, Phys. Rev. B, 1995, 51, 13023-13032.
    • 69.R. Thompson, Ed., Industrial Inorganic Chemicals: Production and Uses, Royal Society of Chemistry, 1995.
    • 70.T. Mitsuhashi and O. J. Kleppa, J. Am. Ceram. Soc., 1979, 62, 356-357.
    • 71.H. Zhang and J. F. Banfield, J. Phys. Chem. B, 2000, 104, 3481-3487.
    • 72.K.-N. P. Kumar, K. Keizer, A. J. Burggraaf, T. Okubo, H. Nagamoto, and S. Morooka, Publ. Online 02 July 1992 Doi101038358048a0, 1992, 358, 48-51.
    • 73.X. Li, P.-L. Yue, and C. Kutal, New J. Chem., 2003, 27, 1264.
    • 74.R. D. Shannon and J. A. Pask, J. Am. Ceram. Soc., 1965, 48, 391-398.
    • 75.S. Vargas, R. Arroyo, E. Haro, and R. Rodríguez, J. Mater. Res., 1999, 14, 3932-3937.
    • 76.R. Rodríguez-Talavera, S. Vargas, R. Arroyo-Murillo, R. Montiel-Campos, and E. Haro-Poniatowski, J. Mater. Res., 1997, 12, 439-443.
    • 77.R. Zheng, Y. Guo, C. Jin, J. Xie, Y. Zhu, and Y. Xie, J. Mol. Catal. Chem., 2010, 319, 46-51.
    • 78.C. Magne, S. Cassaignon, G. Lancel, and T. Pauporté, ChemPhysChem, 2011, 12, 2461-2467.
    • 79.X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891-2959.
    • 80.K. Tanaka, M. F. V. Capule, and T. Hisanaga, Chem. Phys. Lett., 1991, 187, 73-76.
    • 81.T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, and S. Ito, Angew. Chem. Int. Ed., 2002, 41, 2811-2813.
    • 82.D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, and M. C. Thurnauer, J. Phys. Chem. B, 2003, 107, 4545-4549.
    • 83.J.-M. Herrmann, J. Photochem. Photobiol. Chem., 2010, 216, 85-93.
    • 84.H. Gerischer and A. Heller, J. Phys. Chem., 1991, 95, 5261-5267.
    • 85.Z. He, L. Xie, J. Tu, S. Song, W. Liu, Z. Liu, J. Fan, Q. Liu, and J. Chen, J. Phys. Chem. C, 2010, 114, 526-532.
    • 86.C. D. Jaeger and A. J. Bard, J. Phys. Chem., 1979, 83, 3146-3152.
    • 87.Y. Mao, C. Schoeneich, and K. D. Asmus, J. Phys. Chem., 1991, 95, 10080-10089.
    • 88.F. Akbal and A. Nur Onar, Environ. Monit. Assess., 2003, 83, 295-302.
    • 89.G. R. Peyton and W. H. Glaze, Environ. Sci. Technol., 1988, 22, 761-767.
    • 90.M. W. Peterson, J. A. Turner, and A. J. Nozik, J. Phys. Chem., 1991, 95, 221-225.
    • 91.M. de O. Melo and L. A. Silva, J. Braz. Chem. Soc., 2011, 22, 1399-1406.
    • 90. James Dyson Awards 2012, http://www.jamesdysonaward.org/Projects/Project.aspx?ID=2480&RegionId=8&Winin dex=0, 2012 .
    • 93.J. H. Carey, J. Lawrence, and H. M. Tosine, Bull. Environ. Contam. Toxicol., 1976, 16, 697-701.
    • 94.A. L. Pruden and D. F. Ollis, J. Catal., 1983, 82, 404-417.
    • 95.C.-Y. Hsiao, C.-L. Lee, and D. F. Ollis, J. Catal., 1983, 82, 418-423.
    • 96.Y. Ku and C.-B. Hsieh, Water Res., 1992, 26, 1451-1456.
    • 97.R. W. Matthews, Water Res., 1986, 20, 569-578.
    • 98.N. Mera, T. Hirakawa, T. Sano, K. Takeuchi, Y. Seto, and N. Negishi, J. Hazard. Mater., 2010, 177, 274-280.
    • 99.F. Denny, E. Permana, J. Scott, J. Wang, D. Y. H. Pui, and R. Amal, Environ. Sci. Technol., 2010, 44, 5558-5563.
    • 100.C. Akly, P. A. Chadik, and D. W. Mazyck, Appl. Catal. B Environ., 2010, 99, 329- 335.
    • 101.D. M. Tobaldi, A. Tucci, A. S. Škapin, itoa,nJd. EuLr.. CEersapmos. Soc., 2010, 30, 2481-2490.
    • 102.J. Hernández-Fernández, R. Zanella, A. Aguilar-Elguezabal, R. D. Arizabalo, S. Castillo, and M. Moran-Pineda, Mater. Sci. Eng. B, 2010, 174, 13-17.
    • 103.T. An, L. Sun, G. Li, and S. Wan, J. Mol. Catal. Chem., 2010, 333, 128-135.
    • 104.S. Suárez, T. L. R. Hewer, R. Portela, M. D. Hernández-Alonso, R. S. Freire, and B. Sánchez, Appl. Catal. B Environ., 2011, 101, 176-182.
    • 105.M. D. Hernández-Alonso, I. Tejedor-Tejedor, J. M. Coronado, and M. A. Anderson, Appl. Catal. B Environ., 2011, 101, 283-293.
    • 106.V. M. Menéndez-Flores, D. W. Bahnemann, and T. Ohno, Appl. Catal. B Environ., 2011, 103, 99-108.
    • 107.D. Gong, C. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res., 2001, 16, 3331-3334.
    • 108.Zainab T Y Al-Abdullah and Qiao Chen, Un-Publ. Results, 2012.
    • 109.Z. T. Y. Al-Abdullah, Y. Shin, R. Kler, C. C. Perry, W. Zhou, and Q. Chen, Nanotechnology, 2010, 21, 505601.
    • 110.R. Hahn, M. Stark, M. S. Killian, and P. Schmuki, Catal. Sci. Technol., 2013.
    • 111.Y. V. Kolen'ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, J. Frantti, B. R. Churagulov, G. Van Tendeloo, and M. Yoshimura, J. Phys. Chem. B, 2006, 110, 4030-4038.
    • 112.A. Nakahira, T. Kubo, and C. Numako, Acs Appl. Mater. Interfaces, 2010, 2, 2611- 2616.
    • 113.X. Jiang, Y.-B. Jiang, and C. J. Brinker, Chem. Commun. Camb. Engl., 2011, 47, 7524-7526.
    • 114.J.-Y. Ji, P.-H. Shih, C. C. Yang, T. S. Chan, Y.-R. Ma, and S. Y. Wu, Nanotechnology, 2010, 21, 045603.
    • 115.C. S. Cundy and P. A. Cox, Microporous Mesoporous Mater., 2005, 82, 1-78.
    • 116.A. C. Walker, J. Am. Ceram. Soc., 1953, 36, 250-256.
    • 117.H. Feng, M.-H. Zhang, and L. E. Yu, Appl. Catal. Gen., 2012, 413-414, 238-244.
    • 118.T. Putta, M.-C. Lu, and J. Anotai, J. Environ. Manage., 2011, 92, 2272-2276.
    • 119.V. N. Nguyen, N. K. T. Nguyen, and P. H. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, 2, 035014.
    • 120.Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, Nanotechnology, 2009, 20, 235701.
    • 121.G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, Chem. Mater., 1998, 10, 260-267.
    • 122.P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, Chem. Mater., 2004, 16, 5133-5137.
    • 123.T. T. Kang, X. Liu, R. Q. Zhang, W. G. Hu, G. Cong, F. A. Zhao, and Q. Zhu, Appl. Phys. Lett., 2006, 89, 071113-071113.
    • 124.I. P. Parkin, Chem. Vap. Depos., 2012, 18, 87-88.
    • 125.C. Sarantopoulos, A. N. Gleizes, and F. Maury, Thin Solid Films, 2009, 518, 1299- 1303.
    • 126.S. J. Kim, K. Xu, H. Parala, R. Beranek, M. Bledowski, K. Sliozberg, H.-W. Becker, D. Rogalla, D. Barreca, C. Maccato, C. Sada, W. Schuhmann, R. A. Fischer, and A. Devi, Chem. Vap. Depos., 2013, 19, 45-52.
    • 127.D. E. Wolfe and J. Singh, Surf. Coatings Technol., 2000, 124, 142-153.
    • 128.B. A. Movchan, Surf. Eng., 2006, 22, 35-46.
    • 129.L. González-García, G. Lozano, A. Barranco, H. Míguez, and A. R. González-Elipe, J. Mater. Chem., 2010, 20, 6408.
    • 130.Ebelmen, Justus Liebigs Ann. Chem., 1846, 57, 319-355.
    • 129.W. Geffen and E. Berger, Deutsch. Reichspatent No. 736411, 1939.
    • 132.S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 1982, 48, 31-46.
    • 133.E. A. Barringer and H. K. Bowen, J. Am. Ceram. Soc., 1982, 65, C-199-C-201.
    • 134.R. Roy, J. Am. Ceram. Soc., 1956, 39, 145-146.
    • 135.Rustum Roy and Della M. Roy, Am. Miner., 1954, 957.
    • 136.R. Roy, J. Am. Ceram. Soc., 1969, 52, 344-344.
    • 137.E. Traversa, G. Gnappi, A. Montenero, and G. Gusmano, Sensors Actuators B Chem., 1996, 31, 59-70.
    • 138.K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi, J. Mater. Sci., 1994, 29, 1617-1622.
    • 139.L. Miao, S. Tanemura, S. Toh, K. Kaneko, and M. Tanemura, J. Cryst. Growth, 2004, 264, 246-252.
    • 140.P. S. Archana, R. Jose, T. M. Jin, C. Vijila, M. M. Yusoff, and S. Ramakrishna, J. Am. Ceram. Soc., 2010, 93, 4096-4102.
    • 141.T. Maiyalagan, B. Viswanathan, and U. V. Varadaraju, Bull. Mater. Sci., 2006, 29, 705.
    • 142.B. Ding, C. K. Kim, H. Y. Kim, M. K. Seo, and S. J. Park, Fibers Polym., 2004, 5, 105-109.
    • 143.M. Maeda and T. Yamada, J. Phys. Conf. Ser., 2007, 61, 755-759.
    • 144.John Zeleny, Phys. Rev., 1917, 10, 1-7.
    • 145.G. Taylor, Proc. R. Soc. Math. Phys. Eng. Sci., 1969, 313, 453-470.
    • 146.G. Taylor, Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 1964, 280, 383-397.
    • 147.P. K. Baumgarten, J. Colloid Interface Sci., 1971, 36, 71-79.
    • 146.C. Hendrick, in Archive Set 1, American Institute of Aeronautics and Astronautics, 1963.
    • 149.J. J. Feng, Phys. Fluids, 2002, 14, 3912-3926.
    • 150.D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 2000, 87, 4531-4547.
    • 151.V. G. Drozin, J. Colloid Sci., 1955, 10, 158-164.
    • 152.J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer, 2001, 42, 261- 272.
    • 153.P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 2005, 46, 4799-4810.
    • 154.M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Macromolecules, 2004, 37, 1760-1767.
    • 155.R. H. Colby, L. J. Fetters, W. G. Funk, and W. W. Graessley, Macromolecules, 1991, 24, 3873-3882.
    • 156.N. G. McCrum, C. P. Buckley, and C. B. Bucknall, Principles of Polymer Engineering, OUP Oxford, 2nd edn., 1997.
    • 157.J. E. Mark, Ed., Physical Properties of Polymers Handbook, Springer, 2nd ed., 2007.
    • 158.A. Potdevin, G. Chadeyron, D. Boyer, and R. Mahiou, J. Sol-Gel Sci. Technol., 2006, 39, 275-284.
    • 159.A. Lecomte, A. Dauger, and P. Lenormand, J. Appl. Crystallogr., 2000, 33, 496-499.
    • 160.J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Technol., 2007, 18, 180-183.
    • 161.K. Kanjanapongkul, S. Wongsasulak, and T. Yoovidhya, J. Appl. Polym. Sci., 2010, 1821-1829.
    • 162.H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 2009, 77, 656-661.
    • 163.A. K. Kundu, J. Gelman, and D. R. Tyson, Biotechnol. Bioeng., 2011, 108, 207-215.
    • 164.Weidner,St, G. Kuhn,, J. Friedrich, and H. Schroeder, Rapid Commun. Mass Spectrom., 1996, 10, 40-46.
    • 165.T. Kashiwagi, T. Hirata, and J. E. Brown, Macromolecules, 1985, 18, 131-138.
    • 166.R. V. Lapshin, A. P. Alekhin, A. G. Kirilenko, S. L. Odintsov, and V. A. Krotkov, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 2010, 4, 1-11.
    • 167.M. L. Beasley and R. L. Collins, Science, 1970, 169, 769-770.
    • 169.Sigma Aldrich, http://www.sigmaaldrich.com/analytical-chromatography/analyticalproducts.html?TablePage=9640723, 2013.
    • 169.S. C. Mraw, Rev. Sci. Instrum., 1982, 53, 228.
    • 170.M. J. O'neAilnl,al. Chem., 1964, 36, 1238-1245.
    • 171.E. S. Watson, M. J. O'nsetilnl, anJd. NJ.uBrenner, Anal. Chem., 1964, 36, 1233- 1238.
    • 172.T. Hirata, T. Kashiwagi, and J. E. Brown, Macromolecules, 1985, 18, 1410-1418.
    • 173.T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, and E. Masuda, Macromolecules, 1986, 19, 2160-2168.
    • 174.B. Braconnier, C. A. Páez, S. Lambert, C. Alié, C. Henrist, D. Poelman, J.-P. Pirard, R. Cloots, and B. Heinrichs, Microporous Mesoporous Mater., 2009, 122, 247-254.
    • 175.J. Huang, Y. Liu, L. Lu, and L. Li, Res. Chem. Intermed., 2012, 38, 487-498.
    • 176.M. Iwasaki, M. Hara, H. Kawada, H. Tada, and S. Ito, J. Colloid Interface Sci., 2000, 224, 202-204.
    • 177.V. Kisand, U. Joost, V. Reedo, R. Pärna, T. Tätte, J. Shulga, A. Saar, L. Matisen, A. Kikas, and I. Kink, Appl. Surf. Sci., 2010, 256, 4538-4542.
    • 178.M. Răileanu, M. Crişan, N. Drăgan, D. Crişan, A. Galtayries, A. Brăileanu, A Ianculescu, V. S. Teodorescu, I. Niţoi, and M. J.ASnoals-GtaeslesSccui., Technol., 2009, 51, 315-329.
    • 179.G. He, Y. Cai, Y. Zhao, X. Wang, C. Lai, M. Xi, Z. Zhu, and H. Fong, J. Colloid Interface Sci., 2013, 398, 103-111.
    • 180.R. Su, R. Tiruvalam, Q. He, N. Dimitratos, L. Kesavan, C. Hammond, J. A. LopezSanchez, R. Bechstein, C. J. Kiely, G. J. Hutchings, and F. Besenbacher, Acs Nano, 2012, 6, 6284-6292.
    • 181.Y. Zhao, J. Liu, L. Shi, S. Yuan, J. Fang, Z. Wang, and M. Zhang, Appl. Catal. B Environ., 2011, 103, 436-443.
    • 182.J. Araña, E. Pulido Melián, V. M. Rodríguez López, A. Peña Alonso, J. M. Doña Rodríguez, O. González Díaz, and J. Pérez Peña, J. Hazard. Mater., 2007, 146, 520- 528.
    • 183.S. Parra, J. Olivero, L. Pacheco, and C. Pulgarin, Appl. Catal. B Environ., 2003, 43, 293-301.
    • 184.J. C. D'Oliveira, -GS.ayyAeld, and P. Pichat, Environ. Sci. Technol., 1990, 24, 990- 996.
    • 185.B. Roig, C. Gonzalez, and O. Thomas, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2003, 59, 303-307.
    • 186.Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying, J. Phys. Chem. B, 1998, 102, 10871-10878.
    • 187.W. Zhang, R. Zhu, L. Ke, X. Liu, B. Liu, and S. Ramakrishna, Small, 2010, 6, 2176- 2182.
    • 188.D. Bahnemann, D. Bockelmann, and R. Goslich, Sol. Energy Mater., 1991, 24, 564- 583.
    • 189.R. Terzian and N. Serpone, J. Photochem. Photobiol. Chem., 1995, 89, 163-175.
    • 190.C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, Environ. Sci. Technol., 1991, 25, 494-500.
    • 191.J. R. Hook and H. E. Hall, Solid State Physics, Wiley-Blackwell, 2nd edn., 1991.
    • 192.J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, Nat. Mater., 2010, 9, 762-767.
    • 193.R. Cypres and B. Bettens, Tetrahedron, 1974, 30, 1253-1260.
    • 194.A. M. Scheer, C. Mukarakate, D. J. Robichaud, M. R. Nimlos, H.-H. Carstensen, and G. Barney Ellison, J. Chem. Phys., 2012, 136, 044309.
    • 195.Z. F. Xu and M. C. Lin, J. Phys. Chem. A, 2006, 110, 1672-1677.
    • 196.S. Bingham and W. A. Daoud, J. Mater. Chem., 2011, 21, 2041.
    • 197.A. Fuerte, M. D. Hernández-Alonso, A. J. Maira, A. Martínez-Arias, M. FernándezGarcía, J. C. Conesa, and J. Soria, Chem. Commun., 2001, 2718-2719.
    • 198.Y. Park, S.-H. Lee, S. O. Kang, and W. Choi, Chem. Commun., 2010, 46, 2477.
    • 199.L. B. Lin and D. L. Lin, J. Phys. Chem. Solids, 1994, 55, 1309-1313.
    • 200.S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, and Y. Li, J. Colloid Interface Sci., 2011, 355, 328-333.
    • 201.C. Adán, A. Bahamonde, M. Fernández-García, and A. Martínez-Arias, Appl. Catal. B Environ., 2007, 72, 11-17.
    • 202.J. Xu, Y. Ao, M. Chen, D. Fu, and C. Yuan, Thin Solid Films, 2010, 518, 4170-4174.
    • 203.J. C.-S. Wu and C.-H. Chen, J. Photochem. Photobiol. Chem., 2004, 163, 509-515.
    • 204.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science, 2001, 293, 269- 271.
    • 205.P. A. Mangrulkar, S. P. Kamble, M. M. Joshi, J. S. Meshram, N. K. Labhsetwar, and S. S. Rayalu, Int. J. Photoenergy, 2012, 2012, 1-10.
    • 206.M. I. Litter and J. A. Navio, J. Photochem. Photobiol. Chem., 1996, 98, 171-181.
    • 207.S. T. Martin, H. Herrmann, W. Choi, and M. R. Hoffmann, J. Chem. Soc. Faraday Trans., 1994, 90, 3315.
    • 208.S. Buddee, S. Wongnawa, U. Sirimahachai, and W. Puetpaibool, Mater. Chem. Phys., 2011, 126, 167-177.
    • 209.G. Col n,M. C. Hidalgo, and .JA. Nav o, Appl. Catal. Gen., 2002, 231, 185-199.
    • 210.R. Bacsa, J. Kiwi, T. Ohno, P. Albers, and V. Nadtochenko, J. Phys. Chem. B, 2005, 109, 5994-6003.
    • 211.J. Zhu, J. Yang, Z.-F. Bian, J. Ren, Y.-M. Liu, Y. Cao, H.-X. Li, H.-Y. He, and K.-N. Fan, Appl. Catal. B Environ., 2007, 76, 82-91.
    • 212.Y. Wu, M. Xing, J. Zhang, and F. Chen, Appl. Catal. B Environ., 2010, 97, 182-189.
    • 213.H. Tong, Q. Chen, Z. Yin, H. Hu, D. Wu, and Y. Yang, Trans. Nonferrous Met. Soc. China, 2009, 19, 1483-1488.
    • 214.G. Yang, Z. Jiang, H. Shi, M. O. Jones, T. Xiao, P. P. Edwards, and Z. Yan, Appl. Catal. B Environ., 2010, 96, 458-465.
    • 215.K. Qi, B. Fei, and J. H. Xin, Thin Solid Films, 2011, 519, 2438-2444.
    • 216.Y. Brik, J. Catal., 2001, 202, 118-128.
    • 217.J. Kul ani-nJakovl evi, M. Radoi i, T. Radeti , . Konstantinovi , . V. Šapon i, and .JNedel kovi, J. Phys. Chem. C, 2009, 113, 21029-21033.
    • 218.B. Choudhury and A. Choudhury, J. Lumin., 2012, 132, 178-184.
    • 219.J. Xu, S. Shi, L. Li, X. Zhang, Y. Wang, X. Chen, J. Wang, L. Lv, F. Zhang, and W. Zhong, J. Appl. Phys., 2010, 107, 053910.
    • 220.K. M. Reddy and A. Punnoose, J. Appl. Phys., 2007, 101, 09H112.
    • 221.Guo-Wei Zhou, Don Keun Lee, Young Hwan Kim, Chang Woo Kim, and Young Soo Kang, Bull Korean Chem Soc, 2006, 27, 368.
    • 222.D. B. Hamal and K. J. Klabunde, J. Phys. Chem. C, 2011, 115, 17359-17367.
    • 223.K. T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. Chem., 1997, 108, 79-84.
    • 224.W.-C. Hung, S.-H. Fu, J.-J. Tseng, H. Chu, and T.-H. Ko, Chemosphere, 2007, 66, 2142-2151.
    • 225.Z. M. Wang, G. Yang, P. Biswas, W. Bresser, and P. Boolchand, Powder Technol., 2001, 114, 197-204.
    • 226.D. Cordischi, N. Burriesci, F. D'Alba, M. Petrera, G. Polizzotti, andJ. M. Schia Solid State Chem., 1985, 56, 182-190.
    • 227.L. Palmisano, M. Schiavello, A. Sclafani, C. Martin, I. Martin, and V. Rives, Catal. Lett., 1994, 24, 303-315.
    • 228.M. P. Seabra, I. M. M. Salvado, and J. A. Labrincha, Ceram. Int., 2011, 37, 3317- 3322.
    • 229.E. Piera, Appl. Catal. B Environ., 2003, 46, 671-685.
    • 230.A. Di Pao,laE. Garc a-L pe,zG. Marc , C. Mart n, L. Palmisano, V. Rives, and A. Maria Venezia, Appl. Catal. B Environ., 2004, 48, 223-233.
    • 231.N. Serpone, D. Lawless, J. Disdier, and J. M. Herrmann, Langmuir, 1994, 10, 643- 652.
    • 232.M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, and P. R. Trevellick, J. Chem. Soc. Faraday Trans. 1, 1983, 79, 2027.
    • 233.D. S. Ginley and M. A. Butler, J. Appl. Phys., 1977, 48, 2019.
    • 234.K. Karthik, S. K. Pandian, and N. V. Jaya, Appl. Surf. Sci., 2010, 256, 6829-6833.
    • 235.R. Nirmala, H. Y. Kim, C. Yi, N. A. M. Barakat, R. Navamathavan, and M. ElNewehy, Int. J. Hydrog. Energy, 2012, 37, 10036-10045.
    • 236.H.-H. Tseng, M.-C. Wei, S.-F. Hsiung, and C.-W. Chiou, Chem. Eng. J., 2009, 150, 160-167.
    • 237.S. D. Sharma, D. Singh, K. K. Saini, C. Kant, V. Sharma, S. C. Jain, and C. P. Sharma, Appl. Catal. Gen., 2006, 314, 40-46.
    • 238.Y. Li, W. Wlodarski, K. Galatsis, S. H. Moslih, J. Cole, S. Russo, and N. Rockelmann, Sensors Actuators B Chem., 2002, 83, 160-163.
    • 239.V. Shutthanandan, S. Thevuthasan, T. Droubay, S. M. Heald, M. H. Engelhard, D. E. McCready, S. A. Chambers, P. Nachimuthu, and B. S. Mun, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms, 2006, 242, 198-200.
    • 240.D. Mardare, F. Iacomi, N. Cornei, M. Girtan, and D. Luca, Thin Solid Films, 2010, 518, 4586-4589.
    • 241.C.-C. Tsai and H. Teng, Appl. Surf. Sci., 2008, 254, 4912-4918.
    • 242.B. Tian, C. Li, and J. Zhang, Chem. Eng. J., 2012, 191, 402-409.
    • 243.B. Choudhury and A. Choudhury, Mater. Chem. Phys., 2012, 132, 1112-1118.
    • 244.A. R. Denton and N. W. Ashcroft, Phys. Rev., 1991, 43, 3161.
    • 245.Y.-H. Peng, G.-F. Huang, and W.-Q. Huang, Adv. Powder Technol., 2012, 23, 8-12.
    • 246.Y. Xie, N. Huang, S. You, Y. Liu, B. Sebo, L. Liang, X. Fang, W. Liu, S. Guo, and X.-Z. Zhao, J. Power Sources, 2013, 224, 168-173.
    • 247.S. Songara, M. K. Patra, M. Manoth, L. Saini, V. Gupta, G. S. Gowd, S. R. Vadera, and N. Kumar, J. Photochem. Photobiol. Chem., 2010, 209, 68-73.
    • 248.Z. Zhang, C. Shao, L. Zhang, X. Li, and Y. Liu, J. Colloid Interface Sci., 2010, 351, 57-62.
    • 249.K. Chen, J. Li, W. Wang, Y. Zhang, X. Wang, and H. Su, Appl. Surf. Sci., 2011, 257, 7276-7285.
    • 250.S. Chang and W. Liu, Appl. Catal. B Environ., 2011, 101, 333-342.
    • 251.S. Higashimoto, W. Tanihata, Y. Nakagawa, M. Azuma, H. Ohue, and Y. Sakata, Appl. Catal. Gen., 2008, 340, 98-104.
    • 252.H. Choi and M. Kang, Int. J. Hydrog. Energy, 2007, 32, 3841-3848.
    • 253.P.-O. Larsson and A. Andersson, J. Catal., 1998, 179, 72-89.
    • 254.K. Song, J. Zhou, J. Bao, and Y. Feng, J. Am. Ceram. Soc., 2008, 91, 1369-1371.
    • 255.R. López, R. Gómez, and M. E. Llanos, Catal. Today, 2009, 148, 103-108.
    • 256.P.-O. Larsson, A. Andersson, L. R. Wallenberg, and B. Svensson, J. Catal., 1996, 163, 279-293.
    • 257.P. Vanysek, Crc Handb. Chem. Phys. Crc Press Boca Raton, 1998.
    • 258.L. S. Yoong, F. K. Chong, and B. K. Dutta, Energy, 2009, 34, 1652-1661.
    • 259.C. J. Chang, Z.-H. Loh, C. Shi, F. C. Anson, and D. G. Nocera, J. Am. Chem. Soc., 2004, 126, 10013-10020.
    • 260.M. W. Kanan and D. G. Nocera, Science, 2008, 321, 1072-1075.
    • 261.J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, and I. Eisele, Sensors Actuators B Chem., 2003, 93, 442-448.
    • 262.Y. Wang, Y. Wang, R. Jiang, and R. Xu, Ind. Eng. Chem. Res., 2012, 51, 9945-9951.
    • 263. . Alt ntaş, E.akçÇak,m M. V. Kahraman, N. K. Apohan, anJd.SoAl-G.elGüngör, Sci. Technol., 2011, 58, 612-618.
    • 264.R. Sasikala, A. R. Shirole, V. Sudarsan, V. S. Kamble, C. Sudakar, R. Naik, R. Rao, and S. R. Bharadwaj, Appl. Catal. Gen., 2010, 390, 245-252.
    • 265.K. Cendrowski, X. Chen, B. Zielinska, R. J. Kalenczuk, M. H. Rümmeli, B. Büchner, R. Klingeler, and E. Borowiak-Palen, J. Nanoparticle Res., 2011, 13, 5899-5908.
    • 266.H. Leinonen, Removal of harmful metals from metal plating waste waters using selective ion exchangers, University of Helsinki, 1999.
    • 267.V. Y. Gusev, X. Feng, . Bu, G. L. Haller, Ja.nPdhysJ..ChAe m.., O19'B96ri,en, 100, 1985-1988.
    • 268.E. M. Rabinovich, D. W. Johnson, J. B. MacChesney, and E. M. Vogel, J. Non-Cryst. Solids, 1982, 47, 435-439.
    • 269.W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62-69.
    • 270.C. Colella and A. F. Gualtieri, Microporous Mesoporous Mater., 2007, 105, 213-221.
    • 271.L. Pauling, Proc. Natl. Acad. Sci. U. S. A., 1930, 16, 453.
    • 274.G. C. H. Lee and G. C. H. Lee, US-Patent No. 95/141; 502/64, 1975.
    • 275.R. M. Milton and R. M. Milton, US Patent No. 20810454 1957.
    • 274.P. B. Weisz and V. J. Frilette, J. Phys. Chem., 1960, 64, 382-382.
    • 275.G. T. Kerr and G. C. Johnson, J. Phys. Chem., 1960, 64, 381-382.
    • 276.M. E. Davis and R. F. Lobo, Chem. Mater., 1992, 4, 756-768.
    • 277.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, and E. W. Sheppard, J. Am. Chem. Soc., 1992, 114, 10834- 10843.
    • 278.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 1992, 359, 710-712.
    • 279.D. H. Olson, J. Phys. Chem., 1970, 74, 2758-2764.
    • 280.S. Kulprathipanja and Wiley InterScience (Online service), Zeolites in industrial separation and catalysis, Wiley-VCH, Weinheim, 2010.
    • 281.E. Álvarez-Ayuso, Water Res., 2003, 37, 4855-4862.
    • 282.N. Moreno, X. Querol, C. Ayora, C. F. Pereira, and M. Janssen-Jurkovicová, Environ. Sci. Technol., 2001, 35, 3526-3534.
    • 283.P. Castaldi, L. Santona, and P. Melis, Chemosphere, 2005, 60, 365-371.
    • 284.M. Ackley, Microporous Mesoporous Mater., 2003, 61, 25-42.
    • 285.G. F. Froment, W. J. H. Dehertog, and A. J. Marchi, Catalysis, 1992, 9.
    • 286.J. A. Lercher, R. A. Van Santen, and H. Vinek, Catal. Lett., 1994, 27, 91-96.
    • 287.Y. Iwase, Y. Sakamoto, A. Shiga, A. Miyaji, K. Motokura, T. Koyama, and T. Baba, J. Phys. Chem. C, 2012, 116, 5182-5196.
    • 288.M. Tamura, W. Chaikittisilp, T. Yokoi, and T. Okubo, Microporous Mesoporous Mater., 2008, 112, 202-210.
    • 289.Q.-H. Xia and T. Tatsumi, Mater. Chem. Phys., 2005, 89, 89-98.
    • 290.A. Corma, M. T. Navarro, and J. P. Pariente, J. Chem. Soc. Chem. Commun., 1994, 147.
    • 291.R. M. Mohamed, I. A. Mkhalid, M. Abdel Salam, and M. A. Barakat, Desalination Water Treat., 2013, 1-8.
    • 292.A. Corma and H. Garcia, Chem. Commun., 2004, 1443.
    • 293.H. García and H. D. Roth, Chem. Rev., 2002, 102, 3947-4008.
    • 294.Y. Xu and C. H. Langford, J. Phys. Chem. B, 1997, 101, 3115-3121.
    • 295.B. Dong and S. Lan, J. Phys. Conf. Ser., 2013, 418, 012121.
    • 296.R. J. Tayade, R. G. Kulkarni, and R. V. Jasra, Ind. Eng. Chem. Res., 2007, 46, 369- 376.
    • 297.T. Hisanaga and K. Tanaka, J. Hazard. Mater., 2002, 93, 331-337.
    • 298.A. Nasonova and K.-S. Kim, Catal. Today, 2013, 211, 90-95.
    • 299.M. V. Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, and V. Murugesan, Chemosphere, 2006, 63, 1014-1021.
    • 300.Y. H. Hsien, C. F. Chang, Y. H. Chen, and S. Cheng, Appl. Catal. B Environ., 2001, 31, 241-249.
    • 301.K. Susa, I. Matsuyama, S. Satoh, and T. Suganuma, Electron. Lett., 1982, 18, 499- 500.
    • 302.E. M. Rabinovich, J. B. MacChesney, D. W. Johnson, J. R. Simpson, B. W. Meagher, F. V. Dimarcello, D. L. Wood, and E. A. Sigety, J. Non-Cryst. Solids, 1984, 63, 155- 161.
    • 303.Y. Matatov-Meytal, V. Barelko, I. Yuranov, L. Kiwi-Minsker, A. Renken, and M. Sheintuch, Appl. Catal. B Environ., 2001, 31, 233-240.
    • 304.L. Kiwi-Minsker, I. Yuranov, E. Slavinskaia, V. Zaikovskii, and A. Renken, Catal. Today, 2000, 59, 61-68.
    • 305.A. Piscopo, D. Robert, C. Marzolin, and J. V. Weber, J. Mater. Sci. Lett., 2000, 19, 683-684.
    • 306.D. Robert, A. Piscopo, O. Heintz, and J. . Weber, Catal. Today, 1999, 54, 291-296.
    • 307.Y. San You, K.-H. Chung, J.-H. Kim, and G. Seo, Korean J. Chem. Eng., 2001, 18, 924-929.
    • 308.A. Blaková, L. Csölleová, and V. Brezova, J. Photochem. Photobiol. Chem., 1998, 113, 251-256.
    • 309.Brezova V., Blazkova A., Karpinsky L., Groskova J., Havlinova B., Jorik V., and Ceppan M., J. Photochem. Photobiol. Chem., 1997, 109, 177-183.
    • 310.P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, and C. Gaysse, Catal. Today, 2000, 63, 363-369.
    • 311.K. Kamiya, S. Sakka, and Y. Tatemichi, J. Mater. Sci., 1980, 15, 1765-1771.
    • 312.B. G. Muralidharan and D. C. Agrawal, J. Sol-Gel Sci. Technol., 1997, 9, 85-93.
    • 313.T. Gunji, Y. Nagao, T. Misono, and Y. Abe, J. Non-Cryst. Solids, 1989, 107, 149-154.
    • 314.B. Ding, H. Kim, C. Kim, M. Khil, and S. Park, Nanotechnology, 2003, 14, 532.
    • 315.S. Zhan, D. Chen, X. Jiao, and Y. Song, Chem. Commun., 2007, 2043.
    • 1.P. W. Atkins and J. De Paula, Atkins' Physical chemistry, 8th Ed., W.H. Freeman, New York, 2006.
    • 2.J. K. Burdett, Chemical bonding in solids, 1st Ed., Oxford Univ. Press, New York, 1995.
    • 3.A. K. Cheetham and Day, Solid state chemistry: techniques, 1st Ed., Clarendon Press, Oxford, 1988.
    • 4.W. Clegg, Crystal structure determination, 1st Ed., Oxford Univ. Press, Oxford, 1998.
    • 5.P. A. Cox, The electronic structure and chemistry of solids, 1st Ed., Oxford University Press, Oxford, New York, 1987.
    • 6.S. R. Elliott, The physics and chemistry of solids, 2nd Ed., Wiley, Chichester [u.a., 2000.
    • 7.W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, 2nd Ed., Dover Publications, New York, 1989.
    • 8.G. Herzberg, Atomic spectra and atomic structure, 2nd Ed., Dover Publications, New York, 1945.
    • 9.J. Keeler and P. Wothers, Chemical structure and reactivity: an integrated approach, 1st Ed., Oxford University Press, Oxford, 2008.
    • 10.D. M. Smyth, The defect chemistry of metal oxides, 1st Ed., Oxford University Press, New York, 2000.
    • 11.L. Solymar and D. Walsh, Lectures on the electrical properties of materials, 2nd Ed., Oxford University Press, Oxford; New York, 1979.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article