Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Beckingham, M.; Farrington, Sinead; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G. (Graham); Martin, T. A.; Murray, W.; Pianori, E.; HASH(0x55a2e8a38020) (2015)
Publisher: Springer
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment, High Energy Physics::Phenomenology
A search is presented for the direct pair production of a chargino and a neutralino pp→χ~±1χ~02, where the chargino decays to the lightest neutralino and the W boson, χ~±1→χ~01(W±→ℓ±ν), while the neutralino decays to the lightest neutralino and the 125 GeV Higgs boson, χ~02→χ~01(h→bb/γγ/ℓ±νqq). The final states considered for the search have large missing transverse momentum, an isolated electron or muon, and one of the following: either two jets identified as originating from bottom quarks, or two photons, or a second electron or muon with the same electric charge. The analysis is based on 20.3 fb−1 of s√=8 TeV proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with the Standard Model expectations, and limits are set in the context of a simplified supersymmetric model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. E. Eichten, K. Lane, Low-scale technicolor at the Tevatron and LHC. Phys. Lett. B 669, 235 (2008). arXiv:0706.2339 [hep-ph]
    • 2. S. Catterall, L. Del Debbio, J. Giedt, L. Keegan, Monte Carlo renormalization group minimal walking technicolor. Phys. Rev. D 85, 094501 (2012). arXiv:1108.3794 [hep-ph]
    • 3. J.R. Andersen et al., Discovering technicolor. Eur. Phys. J. Plus 126, 81 (2011). arXiv:1104.1255 [hep-ph]
    • 4. L. Randall, R. Sundrum, Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221
    • 5. L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064
    • 6. H. Davoudiasl, J.L. Hewett, T.G. Rizzo, Experimental probes of localized gravity: on and off the wall. Phys. Rev. D 63, 075004 (2001). arXiv:hep-ph/0006041
    • 7. G. Altarelli, B. Mele, M. Ruiz-Altaba, Searching for new heavy vector bosons in p p colliders. Z. Phys. C 45, 109 (1989). [erratumibid C 47, 676 (1990)]
    • 8. K. Agashe, H. Davoudiasl, G. Perez, A. Soni, Warped gravitons at the CERN LHC and beyond. Phys. Rev. D 76, 036006 (2007). arXiv:hep-ph/0701186
    • 9. CMS Collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at √s = 8 TeV. J. High Energy Phys. 08, 173 (2014). arXiv:1405.1994 [hep-ex]
    • 10. CMS Collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at √s = 8 TeV. J. High Energy Phys. 08, 174 (2014). arXiv:1405.3447 [hep-ex]
    • 11. ATLAS Collaboration, Search for resonant diboson production in the W W/ W Z → ν j j decay channels with the ATLAS detector at √s = 7 TeV. Phys. Rev. D 87, 112006 (2013). arXiv:1305.0125 [hep-ex]
    • 12. ATLAS Collaboration, Search for W Z resonances in the fully leptonic channel using pp collisions at √s = 8 TeV with the ATLAS detector. Phys. Lett. B 737, 223 (2014). arXiv:1406.4456 [hep-ex]
    • 13. ATLAS Collaboration, Search for resonant diboson production in the qq final state in pp collisions at √s = 8 TeV with the ATLAS detector. Eur. Phys. J. C 75, 69 (2015). arXiv:1409.6190 [hep-ex]
    • 14. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008)
    • 15. A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model. Comput. Phys. Commun. 184, 1729 (2013). [CalcHEP 3.4.3; with the overestimate of the Randall-Sundrum graviton production cross section by a factor of four corrected as reported in http://cp3-origins.dk/research/ units/ed-tools (2013)]. arXiv:1207.6082 [hep-ph]
    • 16. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]
    • 17. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). arXiv:hep-ph/0201195
    • 18. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]
    • 19. R. Hamberg, W.L. van Neerven, T. Matsuura, A complete calculation of the order αs2 correction to the Drell-Yan K -factor. Nucl. Phys. B 359, 343 (1991)
    • 20. T. Gleisberg et al., Event generation with SHERPA 1.1. J. High Energy Phys. 02, 007 (2009). arXiv:0811.4622 [hep-ph]
    • 21. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 [hep-ph]
    • 22. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244
    • 23. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 01, 010 (2001). arXiv:hep-ph/0011363
    • 24. J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637 (1996). arXiv:hep-ph/9601371
    • 25. M. Cacciari et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B 710, 612 (2012). arXiv:1111.5869 [hep-ph]
    • 26. M. Beneke, P. Falgari, S. Klein, C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys. B 855, 695 (2012). arXiv:1109.1536 [hep-ph]
    • 27. P. Bärnreuther, M. Czakon, A. Mitov, Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq → t t + X . Phys. Rev. Lett. 109, 132001 (2012). arXiv:1204.5201 [hep-ph]
    • 28. M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. J. High Energy Phys. 12, 054 (2012). arXiv:1207.0236 [hep-ph]
    • 29. M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. J. High Energy Phys. 01, 080 (2013). arXiv:1210.6832 [hep-ph]
    • 30. M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(αS4 ). Phys. Rev. Lett. 110, 252004 (2013). arXiv:1303.6254 [hep-ph]
    • 31. M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput. Phys. Commun. 185, 2930 (2014). arXiv:1112.5675 [hep-ph]
    • 32. B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 184, 919 (2013). arXiv:hep-ph/0405247
    • 33. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175
    • 34. S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Methods A506, 250 (2003)
    • 35. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [physics.ins-det]
    • 36. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013 (2010). http://cdsweb.cern.ch/record/ 1300517. Accessed 7 May 2015
    • 37. ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data. Eur. Phys. J. C 72, 1909 (2012). arXiv:1110.3174 [hep-ex]
    • 38. ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data. Eur. Phys. J. C 74, 3130 (2014). arXiv:1407.3935 [hep-ex]
    • 39. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm. J. High Energy Phys. 04, 063 (2008). arXiv:0802.1189 [hepph]
    • 40. ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at √s = 7 TeV. Eur. Phys. J. C 73, 2304 (2013). arXiv:1112.6426 [hep-ex]
    • 41. ATLAS Collaboration, Calibration of the performance of b-tagging for c and light-flavour jets in the 2012 ATLAS data. ATLASCONF-2014-046 (2014). http://cdsweb.cern.ch/record/1741020. Accessed 7 May 2015
    • 42. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, Better jet clustering algorithms. J. High Energy Phys. 08, 001 (1997). arXiv:hep-ph/9707323
    • 43. J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs-search channel at the large hadron collider. Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph]
    • 44. ATLAS Collaboration, Performance of boosted W boson identification with the ATLAS detector. ATL-PHYS-PUB-2014-004 (2014). http://cdsweb.cern.ch/record/1690048. Accessed 7 May 2015
    • 45. ATLAS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at √s = 7 TeV with ATLAS. Eur. Phys. J. C 72, 1844 (2012). arXiv:1108.5602 [hep-ex]
    • 46. M.L. Mangano et al., ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 07, 001 (2003). arXiv:hep-ph/0206293
    • 47. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 11, 040 (2004). arXiv:hep-ph/0409146
    • 48. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 11, 070 (2007). arXiv:0709.2092 [hep-ph]
    • 49. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 06, 043 (2010). arXiv:1002.2581 [hep-ph]
    • 50. ATLAS Collaboration, Improved luminosity determination in pp collisions at √s = 7 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]
    • 51. A.L. Read, Presentation of search results: the C Ls technique. J. Phys. G 28, 2693 (2002)
    • 120 Department of Physics, Oxford University, Oxford, UK
    • 121 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
    • 122 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
    • 123 Petersburg Nuclear Physics Institute, Gatchina, Russia
    • 124 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
    • 125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
    • 126 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Fisica, Universidade do Minho, Braga, Portugal; (f)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
    • 127 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
    • 128 Czech Technical University in Prague, Prague, Czech Republic
    • 129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
    • 130 State Research Center Institute for High Energy Physics, Protvino, Russia
    • 131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
    • 132 Ritsumeikan University, Kusatsu, Shiga, Japan
    • 133 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
    • 134 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
    • 135 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
    • 136 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
    • 137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
    • 138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
    • 139 Department of Physics, University of Washington, Seattle, WA, USA
    • 140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
    • 141 Department of Physics, Shinshu University, Nagano, Japan
    • 142 Fachbereich Physik, Universität Siegen, Siegen, Germany
    • 143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
    • 144 SLAC National Accelerator Laboratory, Stanford, CA, USA
    • 145 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
    • 146 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
    • 147 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)The Oskar Klein Centre, Stockholm, Sweden
    • 148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
    • 149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
    • 150 Department of Physics and Astronomy, University of Sussex, Brighton, UK
    • 151 School of Physics, University of Sydney, Sydney, Australia
    • 152 Institute of Physics, Academia Sinica, Taipei, Taiwan
    • 153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
    • 154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
    • 155 Department of Physics, Aristotle University of Thessaloniki, Thessaloníki, Greece
    • 156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
    • 157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
    • 158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Related to

  • egiEGI virtual organizations: atlas
  • egiEGI virtual organizations: cms

Cite this article