LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Public Library of Science (PLoS)
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Research Article, Natural Selection, qx_600, Ecological Selection, Infectious Diseases, Evolutionary Processes, Genetic Loci, Invertebrate Genomics, Evolutionary Biology, Genetics, Genomics, qx_515, Point Mutation, Alleles, Population Genetics, Biology and Life Sciences, Vector-Borne Diseases, wa_240, Invertebrate Genetics, Medicine, wc_750, Mutation, Q, R, Animal Genetics, Science, Animal Genomics, Medicine and Health Sciences, Genetic Polymorphism

Classified by OpenAIRE into

mesheuropmc: parasitic diseases
Background\ud \ud Establishing the extent, geographical distribution and mechanisms of insecticide resistance in malaria vectors is a prerequisite for resistance management. Here, we report a widespread distribution of insecticide resistance in the major malaria vector An. funestus across Uganda and western Kenya under the control of metabolic resistance mechanisms.\ud \ud Methodology/Principal Findings\ud \ud Female An. funestus collected throughout Uganda and western Kenya exhibited a Plasmodium infection rate between 4.2 to 10.4%. Widespread resistance against both type I (permethrin) and II (deltamethrin) pyrethroids and DDT was observed across Uganda and western Kenya. All populations remain highly susceptible to carbamate, organophosphate and dieldrin insecticides. Knockdown resistance plays no role in the pyrethroid and DDT resistance as no kdr mutation associated with resistance was detected despite the presence of a F1021C replacement. Additionally, no signature of selection was observed on the sodium channel gene. Synergist assays and qRT-PCR indicated that metabolic resistance plays a major role notably through elevated expression of cytochrome P450s. DDT resistance mechanisms differ from West Africa as the L119F-GSTe2 mutation only explains a small proportion of the genetic variance to DDT resistance.\ud \ud Conclusion\ud \ud The extensive distribution of pyrethroid and DDT resistance in East African An. funestus populations represents a challenge to the control of this vector. However, the observed carbamate and organophosphate susceptibility offers alternative solutions for resistance management.

Share - Bookmark

Funded by projects

  • WT | Characterization of pyrethro...
  • WT | Characterisation of insectic...

Cite this article