Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier Ltd
Journal: Bioresource Technology
Languages: English
Types: Article
Subjects: Waste Management and Disposal, Bioengineering, Environmental Engineering
This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described; however, they are of limited size and do not yet approach a demonstration scale of operation. With the results available, process models have been developed, and mass and energy balances determined. From these models, process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, J.M.M., Ross, A.B., Anastasakis, K., Hodgson, E.M., Gallagher, J.A., Jones, J.M., Donnison, I.S., 2011. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol. 102 (1), 226-234.
    • Anastasakis, K., Ross, A.B., 2011. Hydrothermal liquefaction of the brown macroalga Laminaria Saccharina: effect of reaction conditions on product distribution and composition. Bioresour. Technol. 102 (7), 4876-4883.
    • Baker, E.G., Butner, R.S., Sealock Jr., L., Elliott, D.C., Neuenschwander, G.G. 1988. Thermocatalytic conversion of food processing wastes: topical report, FY 1988. PNL-6784, Pacific Northwest Lab., Richland, Washington, USA.
    • Baker, E.G., Elliott, D.C., 1988. Catalytic upgrading of biomass pyrolysis oils. In: Bridgwater, A.V., Kuester, J.L. (Eds.), Research in Thermochemical Biomass Conversion. Springer, Netherlands, pp. 883-895.
    • Barbier, J., Charon, N., Dupassieux, N., Loppinet-Serani, A., Mahé, L., Ponthus, J., Courtiade, M., Ducrozet, A., Quoineaud, A.-A., Cansell, F., 2012. Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass Bioenergy 46, 479-491.
    • Behrendt, F., Neubauer, Y., Oevermann, M., Wilmes, B., Zobel, N., 2008. Direct liquefaction of biomass. Chem. Eng. Technol. 31 (5), 667-677.
    • Berglin, E.J., Enderlin, C.W., Schmidt, A.J. 2012. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction. PNNL-21981, Pacific Northwest National Laboratory, Richland, Washington, USA.
    • Biller, P., Friedman, C., Ross, A.B., 2013. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bioproducts. Bioresour. Technol. 136, 188-195.
    • Biller, P., Ross, A.B., 2012. Hydrothermal processing of algal biomass for the production of biofuels and chemicals. Biofuels 3 (5), 603-623.
    • Biller, P., Ross, A.B., Skill, S.C., Lea-Langton, A., Balasundaram, B., Hall, C., Riley, R., Llewellyn, C.A., 2012. Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res. 1 (1), 70-76.
    • Biller, P., Ross, A.B., 2011. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 102, 215-225.
    • Brennan, L., Owende, P., 2009. Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14 (2), 557-577.
    • Brown, T.M., Duan, P., Savage, P.E., 2010. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24 (6), 3639-3646.
    • Cherad, R., Onwudili, J.A., Ekpo, U., Williams, P.T., Lea-Langton, A.R., CarmargoValero, M., Ross, A.B., 2013. Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation. Environ. Prog. Sustain. Energy 32 (4), 902-909.
    • Davis, H., 1981. Chemistry and stoichiometry of wood liquefaction. Biotechnol. Bioenergy Symp. 11, 151-170.
    • Elliott, D., 1981. Description and utilization of product from direct liquefaction of biomass. Biotechnol. Bioenergy Symp. 11, 187-198.
    • Elliott, D.C., 2007. Historical developments in hydroprocessing bio-oils. Energy Fuels 21 (3), 1792-1815.
    • Elliott, D.C., 2011. Hydrothermal processing. In: Thermochemical Processing of Biomass. John Wiley & Sons Ltd, Chichester, U.K, pp. 200-231.
    • Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Deverman, G.S., Werpy, T.A., Phelps, M.R., Baker, E.G., Sealock, L.J., Jr. 1995. Low-temperature catalytic gasification of wet industrial wastes. FY 1993-1994 interim report. PNL-10513, Pacific Northwest National Laboratory, Richland, Washington, USA.
    • Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., Olarte, M.V., Zacher, A.H., 2012. Chemical processing in high-pressure aqueous environment. 9. Process development for catalytic gasification of algae feedstocks. Ind. Eng. Chem. Res. 51, 10768-10777.
    • Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., Roesijadi, G., Zacher, A.H., Magnuson, J.K., 2013a. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. ACS Sustain. Chem. Eng. 2 (2), 207-215.
    • Elliott, D.C., Hart, T.R., Schmidt, A.J., Neuenschwander, G.G., Rotness, L.J., Olarte, M.V., Zacher, A.H., Albrecht, K.O., Hallen, R.T., Holladay, J.E., 2013b. Process development for hydrothermal liquefaction of algae feedstocks in a continuousflow reactor. Algal Res. 2 (4), 445-454.
    • Elliott, D.C., Neuenschwander, G.G, Hart, T.R. 2013c. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks, U.S. Patent Application 2013/041412.
    • Elliott, D.C., Sealock Jr., L., Butner, R.S., Baker, E.G., Neuenschwander, G.G. 1989. Low-temperature conversion of high-moisture biomass: continuous reactor system results. PNL-7126. Pacific Northwest National Laboratory, Richland, Washington, USA.
    • Faeth, J.L., Valdez, P.J., Savage, P.E., 2013. Fast Hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy Fuels 27 (3), 1391-1398.
    • Fonts, I., Gea, G., Azuara, M., Ábrego, J., Arauzo, J., 2012. Sewage sludge pyrolysis for liquid production: a review. Renew. Sustain. Energy Rev. 16 (5), 2781-2805.
    • Garcia Alba, L., Torri, C., Fabbri, D., Kersten, S.R.A., Brilman, D.W.F., 2013. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae. Chem. Eng. J. 228, 214-223.
    • Goudriaan, F., van de Beld, B., Boerefijn, F.R., Bos, G.M., Naber, J.E., van der Wal, S., Zeevalkink, J.A., 2008. Thermal efficiency of the HTU process for biomass liquefaction. In: Progress in Thermochemical Biomass Conversion. Blackwell Science Ltd, Oxford, U.K, pp. 1312-1325.
    • Heilmann, S.M., Jader, L.R., Harned, L.A., Sadowsky, M.J., Schendel, F.J., Lefebvre, P.A., von Keitz, M.G., Valentas, K.J., 2011. Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl. Energy 88 (10), 3286- 3290.
    • Jazrawi, C., Biller, P., Ross, A.B., Montoya, A., Maschmeyer, T., Haynes, B.S., 2013. Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res. 2 (3), 268-277.
    • Jena, U., Vaidyanathan, N., Chinnasamy, S., Das, K.C., 2011. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresour. Technol. 102 (3), 3380-3387.
    • Jones, S.B., Zhu, Y., Anderson, D.B., Hallen, R.T., Elliott, D.C., Schmidt, A.J., Albrecht, K.O., Hart, T.R., Butcher, M.G., Drennan, C., Snowden-Swan, L.J., Davis, R., Kinchin, C. 2014. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading. PNNL-23227, Pacific Northwest National Laboratory, Richland, Washington, USA.
    • Knorr, D., Lukas, J., Schoen, P. 2013. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013. NREL/SR-5100-60462, National Renewable Energy Laboratory, Golden, Colorado, USA.
    • Krochta, J.M., Hudson, J.S., Drake, C.W., Wang, D.I.C., 1984. Alkaline thermochemical degradation of cellulose to organic acids. Biotechnol. Bioenergy Symp. 14, 37- 54.
    • Liu, X., Saydah, B., Eranki, P., Colosi, L.M., Greg Mitchell, B., Rhodes, J., Clarens, A.F., 2013. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresour. Technol. 148, 163-171.
    • Matsumura, Y., Minowa, T., Potic, B., Kersten, S.R.A., Prins, W., van Swaaij, W.P.M., van de Beld, B., Elliott, D.C., Neuenschwander, G.G., Kruse, A., Jerry Antal Jr., M., 2005. Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29 (4), 269-292.
    • Miao, C., Chakraborty, M., Chen, S., 2012. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour. Technol. 110, 617-627.
    • McDermid, K., Stuercke, B., 2003. Nutritional composition of edible Hawaiian seaweeds. J. Appl. Phycol. 15 (6), 513-524.
    • NAABB. 2014. NAABB Synopsis report. 7 August 2014.
    • NABC. 2014. 7 August 2014.
    • Nelson, M., Zhu, L., Thiel, A., Wu, Y., Guan, M., Minty, J., Wang, H.Y., Lin, X.N., 2013. Microbial utilization of aqueous co-products from hydrothermal liquefaction of microalgae Nannochloropsis oculata. Bioresour. Technol. 136, 522-528.
    • Peterson, A.A., Lachance, R.P., Tester, J.W., 2010. Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: glucose glycine interactions in high-temperature, high-pressure water. Ind. Eng. Chem. Res. 49 (5), 2107-2117.
    • Pham, M., Schideman, L., Scott, J., Rajagopalan, N., Plewa, M.J., 2013. Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. Environ. Sci. Technol. 47 (4), 2131-2138.
    • Pienkos, P.T., Darzins, A., 2009. The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod. Biorefin. 3 (4), 431-440.
    • Ross, A.B., Jones, J.M., Kubacki, M.L., Bridgeman, T., 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99 (14), 6494-6504.
    • Schaleger, L.L., Figueroa, C., Davis, H.G., 1982. Direct liquefaction of biomass: results from operation of continuous bench-scale unit in liquefaction of water slurries of Douglas fir wood. Biotechnol. Bioenergy Symp. 12, 3-14.
    • Sudasinghe, N., Dungan, B., Lammers, P., Albrecht, K., Elliott, D., Hallen, R., Schaub, T., 2014. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel 119, 47-56.
    • Tews, I.J., Zhu, Y., Drennan, C.V., Elliott, D.C., Snowden-Swan, L.J., Onarheim, K., Solantausta, Y., Beckman, D. 2014. Biomass direct liquefaction options: technoeconomic and life cycle assessment. PNNL-23579, Pacific Northwest National Laboratory, Richland, Washington, USA.
    • Thigpen, P.L. 1982. Final Report: An Investigation of Liquefaction of Wood at the Biomass Liquefaction Facility, Albany, Oregon, Battelle Pacific Northwest Laboratories, Department of Energy, Wheelabrator Cleanfuel Corporation. Technical Information Center, Office of Scientific and Technical Information, U.S. Department of Energy, contract.
    • Toor, S.S., Rosendahl, L., Rudolf, A., 2011. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36 (5), 2328-2342.
    • Umeki, K., Yamamoto, K., Namioka, T., Yoshikawa, K., 2010. High temperature steam-only gasification of woody biomass. Appl. Energy 87 (3), 791-798.
    • Vardon, D.R., Sharma, B.K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., Strathmann, T.J., 2011. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 102 (17), 8295-8303.
    • Vardon, D.R., Sharma, B.K., Blazina, G.V., Rajagopalan, K., Strathmann, T.J., 2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109, 178- 187.
    • Wang, L., Shahbazi, A., Hanna, M.A., 2011. Characterization of corn stover, distiller grains and cattle manure for thermochemical conversion. Biomass Bioenergy 35 (1), 171-178.
    • Wender, I., Steffgen, F.W., Yavorsky, P.M., 1975. Clean liquid and gaseous fuels from organic solid wastes. In: Henstock, M.E. (Ed.), Recycling and Disposal of Solid Waste. Pergamon Press, New Elmsford, New York, pp. 43-99.
    • Wirth, B., Mumme, J., 2013. Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Appl. Bioenergy 1, 1-10.
    • Yin, S., Dolan, R., Harris, M., Tan, Y., 2010. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol. 101, 3657-3664.
    • Zhu, Y., Albrecht, K.O., Elliott, D.C., Hallen, R.T., Jones, S.B., 2013. Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Res. 2 (4), 455-464.
    • Zhu, Y., Biddy, M.J., Jones, S.B., Elliott, D.C., Schmidt, A.J., 2014. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl. Energy 129, 384-394.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article