Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jazebizadeh, Mohammad; Saidpour, Hossein (2009)
Languages: English
Types: Unknown
For the first time pervaporation separation of miscible liquids has been investigated using three and five layered composite membranes. The materials used to construct the different membranes consisted of natural rubber latex (NRL), hydrophilic and/ or hydrophobic polymers, placed sequentially on top of each other. Methyl cellulose (MC) and carboxymethyl cellulose (CMC) were used as hydrophilic polymers to increase the water selectivity of the membrane and in contrast, ultrahigh molecular weight polyethylene (UHMWPE) was used to increase the organic component selectivity in the membranes. Two different miscible liquid solutions were used, including ethanolwater and acetonewater. The composition of organic component in the feed was varied within the range of 20 to 90% w/w. The measured mass and concentration of permeate in the cold trap was related to the pervaporation flux and separation factor. Finally, the proposed mechanisms that may be responsible for enhancing the permeation of water or organic components through the membranes have been discussed. It has been demonstrated that the five layered hydrophilic composite membranes containing MC leads to the best pervaporation separation performance for a feed of 90% concentrated ethanolwater, giving a separation factor of 51 and pervaporation separation index of 6167, as opposed to using a blended membrane which would yield a separation factor of 1.5 and pervaporation separation index of 309.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • C.H. Lee, (1975) Theory of reverse osmosis  and  some  other  membrane  permeation  operations,  Journal  of  applied  Polymer  Science, Volume 19, 83­95. 
    • W.  Li,  P.  Zue  and  I.  Cabasso,  (1988)  proc.,  3r d  International  Conference  on  Pervaporation  Processes  in  the  Chemical  Industry,  R.  Bakish,  ed.,  Nancy,  France,  ,  pp. 222­223. 
    • G. Li, Wei Zhang, Juping Yang and Xinping  Wang,  (2006)  Time­dependence  of  pervaporation  separation  performance  for  the  separation  of  ethanol/water  mixtures  through  poly  (vinyl  alcohol)  membrane,  Article in Press, accepted 22 October 2006.  P. Linke and A. Kokossis, (2004) Advanced  process  systems  design  technology  for  pollution  prevention  and  waste  treatment,  Advances  in  Environmental  Research,  Vol.  8, Issue 2, Pages 229­245. 
    • V.N.  Malhotra,  (2004)  Use  of  Composite  Membranes for the separation of water from  ethanol­water  mixtures,  Patent  numbers  GB2360004 and GB2359814, granted on 15  April  2003  and  3r d  November  2004  respectively. 
    • E.  Márki,  B.  Lenti,  Gy.  Vatai  and  E.  Békássy­Molnár,  (2001)  Clean  technology  for  acetone  absorption  and  recovery,  Separation  and  Purification  Technology,  Vol. 22­23, 1, Pages 377­382. 
    • M.H.N.  Mulder  and  C.A.  Smolders,  (1984)  On membrane of separation of ethanol/water  mixtures  by  pervaporation  1.  Calculation  of  concentration profiles. Journal of Membrane  Science, Vol. 17 289­307.  J.  Neel,  (1991)  Introduction  to  pervaporation,  in:  R.Y.M.  Haung  (Ed.)  Pervaporation  Membrane  Separation  Processes,  Elsevier,  Amsterdam,  (Chapter  1). 
    • J.  Neel,  (1995)  Membrane  Separation  Technology,  Principles  and  Applications,  Elsevier, Amsterdam, (Chapter 5).  U.  Sander,  P.Soukup,  (1988)  Design  and  operation  of  pervaporation  plant  for  ethanol  dehydration,  Journal  of  Membrane  Science,  Vol. 36, 463. 
    • 1­P.  Schaetzel,  C.  Vauclair,  G.  Luo,  Q.T.  Nguyen,  (2001)  The  solution­diffusion  model  -  order  of  magnitude  calculation  of  coupling  between  the  fluxes  in  pervaporation,  Journal  of  Membrane  Science, Vol. 191, 103­108. 
    • 2­P.  Schaetzel,  Z.  Bendjama,  C.  Vauclair,  Q.T.  Nguyem,  (2001)  Ideal  and  non­ideal  diffusion  through  polymer­  application  to  pervaporation,  Journal  of  Membrane  Science, Vol. 191 (1­2) 95­102. 
    • S.  Sourirajan,  (1963)  The  mechanism  of  demineralization  of  aqueous  sodium  chloride  solutions  by  flow,  under  pressure,  through  porous  membranes,  Industrial  and  Engineering  Chemistry  Fundamentals,  2,  51-55. 
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article