OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Laybourn, Andrea; Katrib, Juliano; Palade, Paula A.; Easun, Timothy L.; Champness, Neil R.; Schröder, Martin; Kingman, Samuel W. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε′) and loss factors (ε′′) of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous Mater., 2004, 73, 3-14; Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly, N. R. Champness, P. Hubberstey and M. Schro¨der, Chem. Commun., 2009, 1025-1027.
    • 2 O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O¨. Yazaydın and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 23 A. C. Metaxas and R. J. Meredith, Industrial Microwave 15016-15021; Y. Yan, S. Yang, A. J. Blake and M. Schro¨der, Heating, The Institution of Engineering and Technology, Acc. Chem. Res., 2014, 47, 296-307; X. Lin, I. Telepeni, 2008. A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, 24 R. N. Clarke, A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, I. Youngs and G. Hill, A guide to the characterisation of P. Hubberstey, N. R. Champness and M. Schro¨der, J. Am. dielectric materials at RF and microwave frequencies, Institute Chem. Soc., 2009, 131, 2159-2171. of Measurement and Control/National Physical Laboratory,
    • 3 V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil, 2003. M. S. Lah and M. Eddaoudl, Chem. Soc. Rev., 2014, 43, 25 G. B. Dudley, R. Richert and A. E. Stiegman, Chem. Sci., 6141-6172. 2015, 6, 2144-2152.
    • 4 W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, 26 U. Kaatze and R. Behrends, Tech. Mess., 2002, 69, 5-11. M. Zhang, Q. Zhang, T. Gentle III, M. Bosch and H.-C. Zhou, 27 T. Chen, G. Hefter and R. Buchner, J. Solution Chem., 2005, Chem. Soc. Rev., 2014, 43, 5561-5593. 34, 1045-1066.
    • 5 J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 28 C. Serre, F. Millange, C. Thouvenot, M. Nogues, 38, 1477-1504; S. Yang, A. J. Ramirez-Cuesta, R. Newby, G. Marsolier, D. Louer and G. F´erey, J. Am. Chem. Soc., V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, 2002, 124, 13519-13526; T. Loiseau, C. Serre, C. Huguenard, C. C. Tang and M. Schro¨der, Nat. Chem., 2015, 7, 121-129; G. Fink, F. Taulelle, M. Henry, T. Bataille and G. F´erey, W. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, Chem. - Eur. J., 2004, 10, 1373-1382. A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, 29 S. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, and G. F´erey, J. Am. Chem. Soc., 2005, 127, 13519-13521; E. Bichoutskaia, N. R. Champness, S. Yang and M. Schro¨der, K. Barthelet, J. Marrot, D. Riou and G. F´erey, Angew. Chem., Chem. Sci., 2012, 3, 2993-2999. Int. Ed., 2002, 41, 281-284.
    • 6 D. Farrusseng, Metal-Organic Frameworks Applications from 30 E. Haque, J. H. Jeong and S. H. Jhung, CrystEngComm, 2010, Catalysis to Gas Storage, Wiley-VCH, Weinheim Germany, 12, 2749-2754. 2011. 31 E. Haque, N. A. Khan, J. H. Park and S. H. Jhung,
    • 7 D. Farrusseng, S. Aguado and C. Pinel, Angew. Chem., Chem. - Eur. J., 2010, 16, 1046-1052. Int. Ed., 2009, 48, 7502-7513. 32 Y. Marcus, J. Solution Chem., 2013, 42, 2354-2363.
    • 8 A. Morozan and F. Jaouen, Energy Environ. Sci., 2012, 5, 33 U. Kaatze, J. Solution Chem., 1997, 26, 1049-1112; 9269-9290. A. K. Lyashchenko and A. Lileev, J. Chem. Eng. Data, 2010,
    • 9 Y.-W. Li, J.-R. Li, L.-F. Wang, B.-Y. Zhou, Q. Chen and 55, 2008-2016. X.-H. Bu, J. Mater. Chem. A, 2013, 1, 495-499. 34 A. K. Lyashchenko and I. M. Karataeva, Russ. J. Phys. Chem.
    • 10 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, A, 2010, 84, 320-328. C. Sanchez and G. F´erey, J. Am. Chem. Soc., 2009, 131, 35 U. Kaatze, V. Lonnecke and R. Pottel, J. Mol. Liq., 1987, 34, 10857-10859. 241-255.
    • 11 M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. 36 H. Falkenhagen, Rev. Mod. Phys., 1931, 3, 412-426. Reineke, M. O'Keeffe and O. M. Yaghi, Acc. Chem. Res., 37 J. Barthel, H. Hetzenauer and R. Buchner, Ber. Bunsen-Ges., 2001, 34, 319-330. 1992, 96, 1424-1432.
    • 12 G. Ferey, Chem. Soc. Rev., 2008, 37, 191-214. 38 U. Kaatze, Z. Phys. Chem. Neue Fol., 1983, 135, 51-75.
    • 13 N. Stock and S. Biswas, Chem. Rev., 2012, 112, 933-969. 39 S. Schrodle, W. W. Rudolph, G. Hefter and R. Buchner,
    • 14 A. M. Joaristi, J. Juan-Alcaniz, P. Serra-Crespo, F. Kapteijn Geochim. Cosmochim. Acta, 2007, 71, 5287-5300. and J. Gascon, Cryst. Growth Des., 2012, 12, 3489-3498. 40 U. Kaatze and K. Giese, J. Mol. Liq., 1987, 36, 15-35.
    • 15 M. Klimakow, P. Klobes, A. F. Thuenemann, K. Rademann 41 F. E. Harris and C. T. Okonski, J. Phys. Chem., 1957, 61, and F. Emmerling, Chem. Mater., 2010, 22, 5216-5221. 310-319.
    • 16 N. A. Khan and S. H. Jhung, Coord. Chem. Rev., 2015, 285, 42 (a) A. S. Lileev, Z. A. Filimonova and A. K. Lyashchenko, 11-23. J. Mol. Liq., 2003, 103, 299-308; (b) U. Kaatze and
    • 17 Z. Ni and R. I. Masel, J. Am. Chem. Soc., 2006, 128, R. Pottel, Z. Phys. Chem. Neue Fol., 1984, 141, 1-13; 12394-12395. (c) J. B. Hasted, Liquid water: dielectric properties, Water A
    • 18 N. A. Khan and S. H. Jhung, Cryst. Growth Des., 2010, 10, comprehensive treatise, Plenum Press, New York, 1972; 1860-1865. (d) K. Giese, U. Kaatze and R. Pottel, J. Phys. Chem., 1970,
    • 19 E. Haque and S. H. Jhung, Chem. Eng. J., 2011, 173, 866-872. 74, 3718.
    • 20 S. H. Jhung, J.-H. Lee, P. M. Forster, G. F´erey, A. K. 43 J. Monz´o-Cabrera, J. M. Catala-Civera, A. D´ıaz-Morcillo, Cheetham and J.-S. Chang, Chem. - Eur. J., 2006, 12, D. S´anchez-Hern´andez, P. J. Plaza-Gonz´alez and E. de los 7899-7905. Reyes, Microwave Opt. Technol. Lett., 2002, 32(6), 465-469;
    • 21 J. B. Hasted, Aqueous Dielectrics, Chapman and Hall Ltd., P. J. Plaza-Gonz´alez, J. Monzo´-Cabrera, J. M. Catal´a-Civera London, 1973. and D. S´anchez-Hern´andez, IEEE Trans. Microwave Theory
    • 22 J. Krupka, Meas. Sci. Technol., 2006, 17, R55-R70. Tech., 2005, 53(5), 1699-1706.
    • 44 (a) R. Buchner, J. Barthel and J. Stauber, Chem. Phys. Lett., 54 P. J. Elving and B. Zemel, J. Am. Chem. Soc., 1957, 79, 1999, 306, 57-63; (b) U. Kaatze, J. Chem. Eng. Data, 1989, 34, 1281-1285. 371-374. 55 Y. Marcus, Chem. Rev., 1988, 88, 1475-1498.
    • 45 C. Akilan, N. Rohman, G. Hefter and R. Buchner, Chem- 56 R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr., PhysChem, 2006, 7, 2319-2330. 1976, 32, 751-767.
    • 46 C. Akilan, G. Hefter, N. Rohman and R. Buchner, J. Phys. 57 J. B. Hubbard, P. Colonomos and P. G. Wolynes, J. Chem. Chem. B, 2006, 110, 14961-14970. Phys., 1979, 71, 2652.
    • 47 U. Kaatze R. Behrends and R. Pottel, J. Non-Cryst. Solids, 58 P. G. Kusalik and G. N. Patey, J. Chem. Phys., 1983, 79, 4468. 2002, 305, 19-28. 59 U. Kaatze, J. Solution Chem., 1997, 26, 1049-1112.
    • 48 E. Glueckauf, Trans. Faraday Soc., 1964, 60, 1637. 60 J. B. Hubbard and R. F. Kayser, J. Chem. Phys., 1981, 74, 3535.
    • 49 R. Buchner, T. Chen and G. Hefter, J. Phys. Chem. B, 2004, 61 U. Kaatze, J. Phys. Chem. B, 2013, 117, 12252-12260. 108, 2365-2375. 62 U. Kaatze, Radiat. Phys. Chem., 1995, 45, 549-566.
    • 50 N. Gavish and K. Promislow, Chem. Phys., 2012, 63 A. P. Gregory and R. N. Clarke, Tables of the Complex arXiv:1208.5169. Permittivity of Dielectric Reference Liquids at Frequencies
    • 51 A. Levy, D. Andelman and H. Orland, Phys. Rev. Lett., 2012, up to 5 GHz, 2012, Report ISSN 1754-2979. 108(22), 227801. 64 A. von Hippel, R. G. Breckenridge, F. G. Chesley and
    • 52 A. Chandra and B. Bagchi, J. Chem. Phys., 2000, 112, L. Tisza, Ind. Eng. Chem., 1946, 38, 1097-1109. 1876-1886. 65 U. Kaatze, J. Solution Chem., 1997, 26, 1049-1112.
    • 53 D. Nicholls, Complexes and first-row transition elements, 66 A. von Hippel, Dielectrics and waves, Wiley, Massachusetts, Macmillan Education Ltd, Basingstoke and London, 1974. 3rd edn, 1954.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok