LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects: QK, TA, QP
DNA-based circuits relying on predictable thermodynamics and kinetics of DNA strand interactions impart flexibility in synthesizing synthetic biological constructs and in coupling these circuits to in vivo processes [1, 2, 6, 7]. Here, we focus on the synthetic Kim-Winfree oscillator network, illustrated in Fig. 1(i), which is a simple but effective coupled oscillator system in which two DNA switches SW1 and SW2 are coupled through activator and inhibitor blocks realized by RNA signals and auxiliary DNA species (see [3]). A typical experimental realization is closed in the sense that once the operation starts, we do not either add any chemicals, especially NTP fuel, externally into the wet-lab apparatus or remove any chemicals, especially waste products, from the apparatus. Within the closed system, the oscillations are bound to die out sooner or later diminishing NTP fuel eventually stops supporting the production of RNA signals and accumulating waste products clog down the toeholds and, as a result, adversely affect the signal propagation. Furthermore, the oxidation effects and the pH variations tend to deactivate the enzymes. Loading poses an additional challenge since it increases the order and the uncertainty of the system indeed, these oscillators have recently been used in [8] to drive conformational changes of a DNA nanomechanical device called DNA tweezers. We show how L1-adaptive control can be used to mitigate these effects.

Share - Bookmark

Cite this article