LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
The Resin Transfer Moulding (RTM) process is one of the most common manufacturing routes for composites. The challenge in the present work is to be able to predict the flow behaviour in order to manufacture advanced composites truss structures. To that end, there is a lack of an advanced simulation tool capable to predict void formations for the manufacture of three dimensional, multi-layer woven textile composites like the Advanced Composites Truss Structure (ACTS) generic node TSB-funded project that is presented in this thesis. Industrial experience has shown that during mould filling, due to race-tracking and stochastic variability in the material properties, the filling patterns and arising cycle times are rarely the same between a given set of apparently identical mouldings.\ud \ud The objectives of this thesis were 2D, 3D racetrack prediction of textile reinforcements for RTM processes and 3D variability prediction at the component scale. A model that predicts the resin rich zone along a component edge was developed for this purpose. The issue of 2D, 3D racetrack prediction was firstly investigated along a 90° edge for three different geometry, architectures and material preforms, on a generic composite node 3D. Variability was also investigated through the same CAD model with the use of the FE/CV technique. \ud \ud A novel numerical approach for 3D FE CAD modelling was developed in order to predict race-tracking and variability for advanced composites structures. A stochastic analysis technique was developed to account for the effect of node variability during the fabrication process by RTM. The study based on this technique provided important insights into flow filling variations, voidage formation and optimization on a generic advanced composite truss structure. \ud \ud The model developed from this work can be used to account for the effects of race-tracking and variability on any other composite component at the macroscale level. The predicted race-track and variability data can complement experimental data in order to enhance flow simulations at the component scale.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Chapter 1: Background
    • 1.1 Introduction.................................................................…..................................1 1.2 Motivation............................................................................…...........………...9 1.3 Thesis overview...............................................................................................10 1.4 Conclusions......................................................................................................13 References..............................................................................................................14 Chapter 2: Literature review
    • 2.1 Composite materials....................................…………....................................15 2.2 Polymer matrix.........................................................……………...................15 2.3 Textile reiforcements………..……………………...............……..................16 2.4 Resin Transfer Moulding (RTM)…………....................................................19 2.5 Modelling and simulations of Liquid Composites Moulding (LCM)………..23 2.6 Optimisation of RTM process............…………..……....................................41 2.7 Finite Element Method (FEM) in RTM..........................................................44 2.8 Control Volume Finite Element Method (CV/FE)..........................................44 2.9 Race-tracking.................................................................................................47 2.10 Void formation and characterization.............................................................50 2.11 Composite Truss Structures...........................................................................53 Chapter 4: Permeability measurement
    • 4.1Introduction……..…………………………………………………………....96 4.2 Background............................................................................…………..……96 4.3 Apparatus………..………………………………...…………..……...........101 4.3.1 In-plane permeability K1, K2 measurements…………..……………..…...101 4.3.2 Through thickness permeability K3………………....................................104 4.4 Methodology…...….………………………………..................................…106 4.4.1 Experimental K1, K2 in-plane permeability ………………......................106 4.4.2 Experimental K3 through thickness permeability ……………………......108 4.5 Results……..........………………………………………………………......110 4.5.1 In-plane permeability K1, K2…………………......................................110 4.5.2 In-plane permeability K1, K2 for 3D woven HTS40 F13…………............110 4.5.3 In-plane permeability K1, K2 for 2/2 twill fabric..............…….............112 4.5.4 In-plane permeability K1, K2 for triaxial fabric.....................…….............114 4.6 Through thickness permeability K3..............................................................116 vii
    • 10 Introduction…............................................................……….........................269 10.1 Discussion…………………….……..…….................................................269 10.2 Conclusion.........................………………………………………..............270 10.2.1 Major conclusions……………………………………………………….273 10.3 Considerations for future work.....………………………..…….................273 Appendix : A Publications and achivements
    • Appendix A:........................................................................................................275 i) Publications......................................................................................................275 ii) Achievements..................................................................................................275 Appendix B: CMM measured fabric thickness on 90° bend…………………..276 Appendix C: Perspex tool experiments and shape analysis tables.....................278 Appendix D: Gap distributions for use in simulation……………………….…308 Appendix E: Simulation tables for generic node................................................312 Spiridon Koutsonas
    • Appendix F: Frequency of voids and distribution……………………………..341 Appendix G: Series flow permeability...............................................................356 Appendix H: HDX30, Trent oil Ltd viscosity....................................................359 Appendix I: Perspex tool design …....................................................................361 Appendix J: Programming codes.......................................................................364 J.1 Images acquisition with 2 web cams (Mat-Lab)............................................364 J.2 Random numbers generator (C-prog.)...........................................................367
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article