Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
High, L.R.H.; Holder, Simon J.; Penfold, Hazel V. (2007)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects: QD
A free-base tetrabromoporphyrin, 15,20-tetrakis(4-(2-methyl-2-bromopropoxy)phenyl)-21H,23H-porphine (2), was synthesized in high yield (91%) by the esterification of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H, 23H-porphine (1) with 2-bromo-2-methylpropanoyl bromide. The free-base porphyrin (2) was demonstrated to be suitable as an initiator for atom transfer radical polymerization (ATRP) of methyl methacrylate giving porphyrin-core star-poly(methyl methacrylate) with conversions of up to 98% ((CuBr)-Br-I, N-(n-propyl)-2-pyridyl-methanimine, toluene, 90 degrees C). UV-vis spectroscopic analysis demonstrated that a degree of complexation of Cu(II) by the porphyrin core occurred during the polymerization. To avoid Cu(11) complexation, zinc(II) 10,15,20-tetrakis(4-(2-methyl-2-bromopropoxy)phenyl)-21H,23H-porphine (4) was synthesized from the free-base porphyrin (2) and employed as an initiator in the ATRP of MMA, giving the corresponding Zn porphyrin-core star-PMMA. The free-base porphyrin (2) was also employed as an initiator for the polymerization of styrene, methyl acrylate, butyl methacrylate, octadecyl acrylate and the copolymerization of isobutyl methacrylate (IBMA) and trifluoroethyl methacrylate (TFEMA), in all cases giving star polymers with conversions of 33-87%. Basic hydrolysis of a porphyrin-core star-polystyrene polymer cleaved the ester linkages about the porphyrin, liberating the individual polystyrene chains which had a number-average molecular weight approximately one-fourth that of the precursor star polymer and a narrow polydispersity index (M-w/M-n, = 1.15) thereby demonstrating efficient initiation from the porphyrin core. Palladium(II) 10,15,20-tetrakis(4-(2-methyl-2-bromopropoxy)phenyl)-21H,23H-porphine (3) was synthesized from the free-base porphyrin (2) and employed as an initiator in the ATRP of MMA but the polymerization was completely inhibited. Pd(II) was introduced into the star polymer cores by heating either a solution of the porphyrin-core star-PMMA or the Zn porphyrin-core star-PMMA with (PdCl2)-Cl-II in benzonitrile. Pt(II) was introduced into a star polymer core by heating a solution of the Zn porphyrin-core star-PMMA-co-TFEMA with (PtCl2)-Cl-II in benzonitrile. UV-vis spectroscopic analysis confirmed the synthesis of Pd(11) and Pt(II) porphyrin complexes and photoluminescent spectroscopy confirmed the luminescent properties of the materials
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) (a) Papkovsky, D. B.; O'Riordan, T. C. J. Fluoresc. 2005, 15, 569- 584. (b) Demas, J. N.; DeGraff, B. A.; Coleman, P. B. Anal. Chem. 1999, 71, 793A-800A.
    • (2) (a) Gewehr, P. M.; Delpy, D. T. Med. Biol. Eng. Comput. 1993, 31, 2-10. (b) Gewehr, P. M.; Delpy, D. T. Med. Biol. Eng. Comput. 1993, 31,11-21. (c) Papkovsky, D. B. Sens. Actuators B 1995, 29, 213- 218. (d) Papkovsky, D. B. Anal. Chem. 1995, 67, 4112-4117. (e) Hartmann, P.; Trettnak, W. Anal. Chem. 1996, 68, 2615-2820. (f) Beswick, R. B.; Pitt, C. W. Chem. Phys. Lett. 1996, 143, 589-592. (g) Harriman, A. Platinum Met. ReV. 1990, 34, 181-184. (h) Lee, W. W.-S.; Li, K.-Y.; Leung, Y.-B.; Chan, C.-S.; Chan, K. S. J. Mater. Chem. 1993, 3, 1031-1035. (i) Papkovsky, D. B. Sens. Actuators B 1993, 11, 293-300. (j) Kavandi, J.; Callis, J.; Gouterman, M.; Khali, G.; Wright, D.; Green, E. ReV. Sci. Instrum. 1990, 61, 3340-3347. (k) Baron, A. E.; Danielson, J. D. S.; Gouterman, M.; Wan, J. R.; Callis, J. B.; McLachlan, B. ReV. Sci. Instrum. 1993, 64, 3394-3402. (l) Amao, Y.; Tabuchi, Y.; Yamashita, Y.; Kimura, K. Eur. Polym. J. 2002, 38, 675-681. (m) Douglas, P.; Eaton, K. Sens. Actuators B: Chem. 2002, 82, 200-208.
    • (3) Basu, B. J.; Anandan, C.; Rajam, K. S. Sens. Actuators B 2003, 94, 257-266.
    • (4) (a) Hah, H.; Sakai, T.; Asai, K.; Nishide, H. Macromol. Symp. 2003, 204, 27. (b) Obata, M.; Tanaka, Y.; Araki, N.; Hirohara, S.; Yano, S.; Mitsuo, K.; Asai, K.; Harada, M.; Kakuchi, T.; Ohtsuki, C. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 2997-3006.
    • (5) (a) Controlled/“LiVing” Radical Polymerization: Progress in ATRP, NMR and RAFT, Matyjasewski, K., Ed.; American Chemical Society: Washington, DC, 2000. (b) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721-1723. (c) Wang, J. S.; Matyjaszewski, K. Macromolecules 1995, 28, 7901-7910. (d) Percec, V.; Barboiu, B. Macromolecules 1995, 28, 7970-7972.
    • (6) (a) Schubert, U. S. Macromol. Rapid Commun. 2005, 26, 237-237. (b) Tekin, E.; Holder, E.; Marin, V.; de Gans, B-J.; Schubert, U. S. Macromol. Rapid Commun. 2005, 26, 293-297. (c) Carlise, J. R.; Wang, X. Y.; Weck, M. Macromolecules, 2005, 38, 9000-9008.
    • (7) (a) Matyjaszewski, K. Polym. Int. 2003, 52, 1559-1565. (b) Kasko, A. M.; Heintz, A. M.; Pugh, C. Macromolecules 1998, 31, 256-271. (c) Matyjaszewski, K.; Miller, P. J.; Fossum, E.; Nakagawa, Y. Appl. Organomet. Chem. 1998, 12, 667-673. (d) Hedrick, J. L.; Trollsas, M.; Hawker, C. J.; Atthoff, B.; Claesson, H.; Heise, A.; Miller, R. D.; Mecerreyes, D.; Jerome, R.; Dubois, P. Macromolecules 1998, 31, 8691-8705.
    • (8) (a) Wu, X. F.; Collings, J. E; McAlvin, J. E.; Cutts, R. W.; Fraser, C. L. Macromolecules 2001, 34, 2812-2821. (b) Smith, A. P.; Fraser, C. L. Macromolecules 2003, 36, 2654-2660. (c) Wu, X. F.; Fraser, C. L. Macromolecules 2000, 33, 4053-4060. (d) Johnson, R. M.; Fraser, C. L. Macromolecules 2004, 37, 2718-2727. (e) Farah, A. A.; Pietro, W. J. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6057-6072. (f) Viau, L.; Even, M.; Maury, O.; Haddleton, D. M.; Le Bozec, H. Macromol. Rapid Commun. 2003, 24, 630-635.
    • (9) (a) de Loos, F.; Reynhout, I. C. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. Commun. 2005, 60-62. (b) Beil, J. B.; Zimmerman, S. C. Macromolecules 2004, 37, 778-787.
    • (10) (a) Haddleton, D. M.; Crossman, M. C.; Bogdan, H. D.; Duncalf, D. J.; Heming, A. M.; Kukulj, D.; Shooter, A. J. Macromolecules 1999, 32, 2110-2119. (b) Street, G.; Illsley, D.; Holder, S. J. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1129-1143.
    • (11) The ester linkage may not be an ideal linker for the long application of such materials in certain applications (such as PSPs) where longterm susceptibility to hydrolysis may be an issue. However for the relatively short-term purposes the ester link should be robust enough not to hydrolyse significantly over the time periods envisaged, particularly given the hydrophobic nature of the polymeric component. Should high stability links between the porphrin and polymer arms be necessary other linkers could be utilized following facile chemical reactions generally utilized for porphyrins.
    • (12) (a) Anderson, H. L.; Wylie, A. P.; Prout, K. J. Chem. Soc., Perkin Trans. 1 1998, 1607-1611. (b) Rothemund, P.; Menotti, A. R. J. Am. Chem. Soc. 1948, 70, 1808.
    • (13) (a) Papkovsky, D. B.; O'Riordan, T. C. J. Fluoresc. 2005, 15, 569- 584. (b) Smith, K M. Porphyrins and Metalloporphyrins; Elsevier, Amsterdam, 1975.
    • (14) Matyjaszewski, K.; Xia, J. H. Chem. ReV. 2001, 101, 2921-2990.
    • (15) Matyjaszewski, K.; Davis, K.; Patten, T. E.; Wei, M. L. Tetrahedron 1997, 53 15321-15329.
    • (16) (a) Matyjaszewski, K.; Patten, T. E.; Xia, J. J. Am. Chem. Soc. 1997, 119, 674-680. (b) Fischer, H. Macromolecules 1997, 30, 5666- 5672. (c) Parker, J; Jones, R. G.; Holder, S. J. Macromolecules 2000, 33, 9166-9168.
    • (17) (a) Amao, Y.; Miyashita, T.; Okura, I. Analyst 2000, 125, 871-875. (b) Amao, Y.; Miyashita, T.; Okura, I. J. Fluor. Chem. 2001, 107, 101-106. (c) Amao, Y.; Miyashita, T.; Okura, I. J. Porphyrins Phthalocyanines 2001, 5, 433-438. (d) Amao, Y.; Asai, K.; Miyashita, T. Anal. Commun. 1999, 36, 367-369.
    • (18) (a) Amao, Y.; Miyashita, T.; Okura, I. React. Funct. Polym. 2001, 47, 49-54. (b) Amao, Y.; Asai, K.; Miyashita, T.; Okura, I. Polym. J. 1999, 31, 1267-1269. (c) Amao, Y.; Miyashita, T.; Okura, I. Anal. Chim. Acta. 2000, 421, 167-174.
    • (19) (a) Khalil, G. E.; Costin, C.; Crafton, J.; Jones, G.; Grenoble, S.; Gouterman, M.; Callis, J. B.; Dalton, L. R. Sens. Actuators B 2004, 97, 13-21. (b) Coyle, L. M.; Gouterman, M. Sens. Actuators B 1999, 61, 92-99.
    • (20) Lindsey, J. S.; Schreimann, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article