Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ruseva, Marieta Milkova
Languages: English
Types: Doctoral thesis
Subjects: Q1
I have created novel anti-complement reagents designed to deliver effective therapy locally, or where inhibition is long-term, to target only the terminal stages of complement. These agents have exciting potential to effectively treat complement-mediated diseases and to retain other crucial biological functions of complement such as opsonisation and immune complex solubilisation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 95. Johansson, L., et al., CD46 in meningococcal disease. Science, 2003. 301(5631): p. 373-5.
    • 96. Segerman, A., et al., Adenovirus type 11 uses CD46 as a cellular receptor. J Virol, 2003. 77(17): p. 9183-91.
    • 97. Schnorr, J., et al., Measles virus-induced down-regulation o f CD46 is associated with enhanced sensitivity to complement-mediated lysis o f infected cells. Eur J Immunol, 1995. 25(4): p. 976-84.
    • 98. Rivailler, P., et al., Enhanced MHC class II-restricted presentation o f measles virus .(MV) hemagglutinin in transgenic mice expressing human MV receptor CD46. Eur J Immunol, 1998. 28(4): p. 1301-14.
    • 99. Cardoso, A., et al., Formaldehyde inactivation o f measles virus abolishes CD46- dependent presentation o f nucleoprotein to murine class I-restricted CTLs but not to class II-restricted helper T cells. Virology, 1995. 212(1): p. 255-8.
    • 100. Karp, C., et al., Mechanism o f suppression o f cell-mediated immunity by measles virus. Science, 1996. 273(5272): p. 228-31.
    • 101. Katayama, Y., A. Hirano, and T. Wong, Human receptor for measles virus (CD46) enhances nitric oxide production and restricts virus replication in mouse macrophages by modulating production o f alpha/beta interferon. J Virol, 2000. 74(3): p. 1252-7.
    • 102. Gerlier, D., et al., Efficient MHC class II-restrictedpresentation o f measles virus to T cells relies on its targeting to its cellular receptor human CD46 and involves an endosomalpathway. Cell Biol Int, 1994.18(5): p. 315-20.
    • 103. Nicholson-Weller, A. and C. Wang, Structure and function o f decay accelerating factor CD55. J Lab Clin Med, 1994.123(4): p. 485-91.
    • 104. Caras, I., et al., Cloning o f decay-acceleratingfactor suggests novel use o f splicing to generate two proteins. Nature, 1987. 325(6104): p. 545-9.
    • 105. Medof, M., et al., Cloning and characterization o f cDNAs encoding the complete sequence o f decay-accelerating factor o f human complement. Proc Natl Acad Sci U S A, 1987. 84(7): p. 2007-11.
    • 106. Brodbeck, W., et al., Cooperation between decay-acceleratingfactor and membrane cofactor protein in protecting cells from autologous complement attack. J Immunol, 2000.165(7): p. 3999-4006.
    • 107. Morgan, B. and S. Meri, Membrane proteins that protect against complement lysis. Springer Semin Immunopathol, 1994.15(4): p. 369-96.
    • 108. Kinoshita, T., et al., Distribution o f decay-acceleratingfactor in the peripheral blood o f normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med, 1985.162(1): p. 75-92.
    • 109. Moore, J., et al., Decay-accelerating factor is present on paroxysmal nocturnal hemoglobinuria erythroid progenitors and lost during erythropoiesis in vitro. J Exp Med, 1985.162(4): p. 1182-92.
    • 110. Nicholson-Weller, A., et al., Surface membrane expression by human blood leukocytes and platelets o f decay-accelerating factor, a regulatory protein o f the complement system. Blood, 1985. 65(5): p. 1237-44.
    • 111. Medof, M., et al., Identification o f the complement decay-acceleratingfactor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med, 1987. 165(3): p. 848-64.
    • 112. Song, W., et al., Mouse decay-accelerating factor: selective and tissue-specific induction by estrogen o f the gene encoding the glycosylphosphatidylinositolanchoredform. J Immunol, 1996. 157(9): p. 4166-72.
    • 113. Spicer, A., M. Seldin, and S. Gendler, Molecular cloning and chromosomal localization o f the mouse decay-accelerating factor genes. Duplicated genes encode glycosylphosphatidylinositol-anchored and transmembrane forms. J Immunol, 1995. 155(6): p. 3079-91.
    • 114. Harris, C., N. Rushmere, and B. Morgan, Molecular and functional analysis o f mouse decay acceleratingfactor (CD55). Biochem J, 1999. 341 ( Pt 3): p. 821-9.
    • 115. Shafren, D., et al., Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J Virol, 1997. 71(6): p. .4736-43.
    • 116. Hafenstein, S., et al., Interaction o f decay-accelerating factor with coxsackievirus B3. J Virol, 2007. 81(23): p. 12927-35.
    • 117. Scharfstein, J., et al., Human C4-bindingprotein. I. Isolation and characterization. J Exp Med, 1978.148(1): p. 207-22.
    • 118. Dahlback, B. and H. Muller-Eberhard, Ultrastructure o f C4b-binding protein fragments formed by limited proteolysis using chymotrypsin. J Biol Chem, 1984. 259(19): p. 11631-4.
    • 119. Gigli, I., T. Fujita, and V. Nussenzweig, Modulation o f the classical pathway C3 convertase by plasma proteins C4 binding protein and C3b inactivator. Proc Natl Acad Sci U S A , 1979. 76(12): p. 6596-600.
    • 120. Hessing, M., et al., The localization o f heparin-binding fragments on human C4bbindingprotein. J Immunol, 1990. 144(1): p. 204-8.
    • 121. Dahlback, B. and J. Stenflo, High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein. Proc Natl Acad Sci U S A, 1981. 78(4): p. 2512-6.
    • 122. Schwalbe, R., et al., Assembly o fprotein S and C4b-bindingprotein on membranes. J Biol Chem, 1990. 265(27): p. 16074-81.
    • 123. Foley, S., et al., Mouse Crry/p65 is a regulator o f the alternative pathway o f complement activation. Eur J Immunol, 1993. 23(6): p. 1381-4.
    • 124. Kim, Y.U., et al., Mouse complement regulatory protein Crry/p65 uses the specific mechanisms o f both human decay-accelerating factor and membrane cofactor protein. J Exp Med, 1995.181(1): p. 151-9.
    • 125. Gettins, P., Serpin structure, mechanism, andfunction. Chem Rev, 2002. 102(12): p. 4751-804.
    • 126. Ziccardi, R., Activation o f the early components o f the classical complement pathway under physiologic conditions. J Immunol, 1981.126(5): p. 1769-73.
    • 127. Ambrus, G., et al., Natural substrates and inhibitors o f mannan-binding lectinassociated serine protease-1 and -2: a study on recombinant catalytic fragments. J Immunol, 2003.170(3): p. 1374-82.
    • 128. Matsushita, M., Y. Endo, and T. Fujita, Cutting edge: complement-activating complex o f ficolin and mannose-binding lectin-associated serine protease. J Immunol, 2000.164(5): p. 2281-4.
    • 129. Matsushita, M., et al., Proteolytic activities o f two types o f mannose-binding lectinassociated serine protease. J Immunol, 2000.165(5): p. 2637-42.
    • 130. Gigli, I., et al., Interaction o f plasma kallikrein with the Cl inhibitor. J Immunol, 1970.104(3): p. 574-81.
    • 131. Rollins, S. and P. Sims, The complement-inhibitory activity o f CD59 resides in its capacity to block incorporation o f C9 into membrane C5b-9. J Immunol, 1990. 144(9): p. 3478-83.
    • 132. Farkas, I., et al., CD59 blocks not only the insertion o f C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J Physiol, 2002. 539(Pt 2): p. 537-45.
    • 133. Sugita, Y., et al., Determination o f carboxyl-terminal residue and disulfide bonds o f MACIF (CD59), a glycosyl-phosphatidylinositol-anchored membrane protein. J Biochem, 1993.114(4): p. 473-7.
    • 134. Meri, S., H. Waldmann, and P. Lachmann, Distribution o f protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest, 1991. .65(5): p. 532-7.
    • 135. Qian, Y., et al., Identification and functional characterization o f a new gene encoding the mouse terminal complement inhibitor CD59. J Immunol, 2000. 165(5): p. 2528-34.
    • 136. Baalasubramanian, S., et al., CD59a is the primary regulator o f membrane attack complex assembly in the mouse. J Immunol, 2004.173(6): p. 3684-92.
    • 137. Cooper, N., Immune adherence by the fourth component o f complement. Science, 1969.165(891): p. 396-8.
    • 138. Yoon, S. and D. Fearon, Characterization o f a soluble form o f the C3b/C4b receptor (CR1) in human plasma. J Immunol, 1985.134(5): p. 3332-8.
    • 139. Pascual, M., et al., Circulating soluble CR1 (CD35). Serum levels in diseases and evidencefor its release by human leukocytes. J Immunol, 1993.151(3): p. 1702-11.
    • 140. Hamer, I., et al., Soluble form o f complement C3b/C4b receptor (CR1) resultsfrom a proteolytic cleavage in the C-terminal region o f CR1 transmembrane domain. Biochem J, 1998. 329 ( Pt 1): p. 183-90.
    • 141. Klickstein, L., et al., Identification o f distinct C3b and C4b recognition sites in the human C3b/C4b receptor (CR1, CD35) by deletion mutagenesis. J Exp Med, 1988. 168(5): p. 1699-717.
    • 142. Hourcade, D., et al., Identification o f an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction o f a secreted form o f complement receptor type 1. J Exp Med, 1988. 168(4): p. 1255-70.
    • 143. Krych, M., D. Hourcade, and J. Atkinson, Sites within the complement C3b/C4b receptor important fo r the specificity o f ligand binding. Proc Natl Acad Sci U S A , 1991.88(10): p. 4353-7.
    • 144. Krych, M., R. Hauhart, and J. Atkinson, Structure-function analysis o f the active sites o f complement receptor type 1. J Biol Chem, 1998. 273(15): p. 8623-9.
    • 145. Krych, M., et al., Analysis o f the functional domains o f complement receptor type 1 (C3b/C4b receptor; CD35) by substitution mutagenesis. J Biol Chem, 1994. 269(18): p. 13273-8.
    • 146. Lindorfer, M., et al., Heteropolymer-mediated clearance o f immune complexes via erythrocyte CR1: mechanisms and applications. Immunol Rev, 2001.183: p. 10-24.
    • 147. Hess, C. and J. Schifferli, Immune adherence revisited: novel players in an old game. News Physiol Sci, 2003.18: p. 104-8.
    • 148. Comacoff, J., et al., Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest, 1983. 71(2): p. 236-47.
    • 149. Iida, K., L. Nadler, and V. Nussenzweig, Identification o f the membrane receptorfor the complementfragment C3d by means o f a monoclonal antibody. J Exp Med, 1983. 158(4): p. 1021-33.
    • 150. Weis, J., T. Tedder, and D. Fearon, Identification o f a 145,000 Mr membrane protein as the C3d receptor (CR2) o f human B lymphocytes. Proc Natl Acad Sci U S A , 1984. 81(3): p. 881-5.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article