LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pickup, David; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R. (2016)
Publisher: Springer Nature
Journal: Computational Visual Media
Languages: English
Types: Article
Subjects: QA75

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_COMPUTERGRAPHICS
The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to ``unbend'' a shape by applying multidimensional scaling to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to a computational speed-up and less distortions of the local details of the shape. We compare our method against other canonical forms and our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over state-of-the-art in a second recent benchmark, while being significantly faster.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Li, B.; Godil, A.; Aono, M.; Bai, X.; Furuya, T.; Li, L.; Lo´pez-Sastre, R.; Johan, H.; Ohbuchi, R.; RedondoCabrera, C.; Tatsuma, A.; Yanagimachi, T.; Zhang, S. SHREC '12 track: Generic 3D shape retrieval. In: Proceedings of the 5th Eurographics Conference on 3D Object Retrieval, 119-126, 2012.
    • [2] Elad, A.; Kimmel, R. On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 25, No. 10, 1285-1295, 2003.
    • [3] Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R.; Cheng, Z.; Nie, S.; Jin, L. Canonical forms for nonrigid 3D shape retrieval. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 99- 106, 2015.
    • [4] Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; Ouhyoung, M. On visual similarity based 3D model retrieval. Computer Graphics Forum Vol. 22, No. 3, 223-232, 2003.
    • [5] Johnson, A. E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 21, No. 5, 433-449, 1999.
    • [6] Tangelder, J. W. H.; Veltkamp, R. C. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications Vol. 39, No. 3, 441-471, 2008.
    • [7] Boyer, E.; Bronstein, A. M.; Bronstein, M. M.; Bustos, B.; Darom, T.; Horaud, R.; Hotz, I.; Keller, Y.; Keustermans, J.; Kovnatsky, A.; Litmany, R.; Reininghaus, J.; Sipiran, I.; Smeets, D.; Suetens, P.; Vandermeulen, D.; Zaharescu, A.; Zobel, V. SHREC 2011: Robust feature detection and description benchmark. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 71-78, 2011.
    • [8] Smeets, D.; Keustermans, J.; Vandermeulen, D.; Suetens, P. meshSIFT: Local surface features for 3D face recognition under expression variations and partial data. Computer Vision and Image Understanding Vol. 117, No. 2, 158-169, 2013.
    • [9] Ben-Chen, M.; Gotsman, C. Characterizing shape using conformal factors. In: Proceedings of the 1st Eurographics Conference on 3D Object Retrieval, 1-8, 2008.
    • [10] Giachetti, A.; Lovato, C. Radial symmetry detection and shape characterization with the multiscale area projection transform. Computer Graphics Forum Vol. 31, No. 5, 1669-1678, 2012.
    • [11] Sun, J.; Ovsjanikov, M.; Guibas, L. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum Vol. 28, No. 5, 1383-1392, 2009.
    • [12] Lian, Z.; Zhang, J.; Choi, S.; ElNaghy, H.; El-Sana, J.; Furuya, T.; Giachetti, A.; Guler, R. A.; Lai, L.; Li, C.; Li, H.; Limberger, F. A.; Martin, R.; Nakanishi, R. U.; Neto, A. P.; Nonato, L. G.; Ohbuchi, R.; Pevzner, K.; Pickup, D.; Rosin, P.; Sharf, A.; Sun, L.; Sun, X.; Tari, S.; Unal, G.; Wilson, R. C. Non-rigid 3D shape retrieval. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 107-120, 2015.
    • [13] Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R.; Cheng, Z.; Lian, Z.; Aono, M.; Hamza, A. B.; Bronstein, A.; Bronstein, M.; Bu, S.; Castellani, U.; Cheng, S.; Garro, V.; Giachetti, A.; Godil, A.; Han, J.; Johan, H.; Lai, L.; Li, B.; Li, C.; Li, H.; Litman, R.; Liu, X.; Liu, Z.; Lu, Y.; Tatsuma, A.; Ye, J. Shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, 101-110, 2014.
    • [14] Hilaga, M.; Shinagawa, Y.; Kohmura, T.; Kunii, T. L. Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 203-212, 2001.
    • [15] Sfikas, K.; Theoharis, T.; Pratikakis, I. Non-rigid 3D object retrieval using topological information guided by conformal factors. The Visual Computer Vol. 28, No. 9, 943-955, 2012.
    • [16] Reuter, M.; Wolter, F.-E.; Peinecke, N. LaplaceBeltrami spectra as 'Shape-DNA' of surfaces and solids. Computer-Aided Design Vol. 38, No. 4, 342- 366, 2006.
    • [17] Smeets, D.; Hermans, J.; Vandermeulen, D.; Suetens, P. Isometric deformation invariant 3D shape recognition. Pattern Recognition Vol. 45, No. 7, 2817- 2831, 2012.
    • [18] Shamai, G.; Zibulevsky, M.; Kimmel, R. Accelerating the computation of canonical forms for 3D nonrigid objects using multidimensional scaling. In: Proceedings of the 2015 Eurographics Workshop on 3D Object Retrieval, 71-78, 2015.
    • [19] Lian, Z.; Godil, A.; Xiao, J. Feature-preserved 3D canonical form. International Journal of Computer Vision Vol. 102, No. 1, 221-238, 2013.
    • [20] Wang, X.-L.; Zha, H. Contour canonical form: An efficient intrinsic embedding approach to matching non-rigid 3D objects. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, Article No. 31, 2012.
    • [21] Pickup, D.; Sun, X.; Rosin, P. L.; Martin, R. R. Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recognition Vol. 48, No. 8, 2500-2512, 2015.
    • [22] Boscaini, D.; Girdziuˇsas, R.; Bronstein, M. M. Coulomb shapes: Using electrostatic forces for deformation-invariant shape representation. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, 9-15, 2014.
    • [23] Crane, K.; Weischedel, C.; Wardetzky, M. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics Vol. 32, No. 5, Article No. 152, 2013.
    • [24] Ying, X.; Xin, S.-Q.; He, Y. Parallel chen-han (PCH) algorithm for discrete geodesics. ACM Transactions on Graphics Vol. 33, No. 1, Article No. 9, 2014.
    • [25] Lian, Z.; Godil, A.; Bustos, B.; Daoudi, M.; Hermans, J.; Kawamura, S.; Kurita, Y.; Lavou´e, G.; Nguyen, H. V.; Ohbuchi, R.; Ohkita, Y.; Ohishi, Y.; Porikli, F.; Reuter, M.; Sipiran, I.; Smeets, D.; Suetens, P.; Tabia, H.; Vandermeulen, D. SHREC '11 track: Shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, 79-88, 2011.
    • [26] Lian, Z.; Godil, A.; Sun, X.; Xiao, J. CM-BOF: Visual similarity-based 3D shape retrieval using clock matching and bag-of-features. Machine Vision and Applications Vol. 24, No. 8, 1685-1704, 2013.
    • [27] Kimmel, R.; Sethian, J. A. Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences of the United States of the America Vol. 95, No. 15, 8431-8435, 1998.
    • [28] Borg, I.; Groenen, P. J. F. Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag New York, 2005.
    • [29] Au, O. K.-C.; Tai, C.-L.; Chu, H.-K.; Cohen-Or, D.; Lee, T.-Y. Skeleton extraction by mesh contraction. In: Proceedings of ACM SIGGRAPH 2008 Papers, Article No. 44, 2008.
    • [30] Yan, H.-B.; Hu, S.-M.; Martin, R.; Yang, Y.-L. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics Vol. 14, No. 3, 693-706, 2008.
    • [31] Baeza-Yates, R. A.; Ribeiro-Neto, B. A. Modern Information Retrieval: The Concepts and Technology behind Search, 2nd edn. Harlow, England: Pearson Education Ltd., 2011.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok