Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fairbairn, Ben (2016)
Publisher: American Mathematical Society
Languages: English
Types: Unknown
Subjects: ems

Classified by OpenAIRE into

arxiv: Mathematics::Category Theory, Mathematics::Geometric Topology
We discuss the recently introduced notion of a Conway Groupoid. In particular we consider various generalisations of the concept including infinite analogues.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. J. Cameron \In nite versions of some topics in nite geometry" in Geometrical Combinatorics Research Notes in Mathematics Series 114 (Eds. F. C. Holroyd and R. J. Wilson) Pitman, Boston, 1984, pp. 13{20
    • [2] P. J. Cameron \Note on large sets of in nite Steiner systems" J. Combin. Des. 3 (1995) pp. 307{311
    • [3] Erica Chesley, Zack Starer-Stor and Emma Zhou \A Finite Simple Puzzle of Order 44,352,000" https://apps.carleton.edu/curricular/math/assets/comps paper.pdf
    • [4] M. Conder and R. Nedela \Symmetric cubic graphs of small girth" Journal of Combinatorial Theory Series B 97 (2007), pp. 757{768
    • [5] J. H. Conway \Graphs and groups and M13" in Notes from New York Graph Theory Day XIV pp. 18{29, 1987
    • [6] J. H. Conway \M13" in Surveys in Combinatorics, 1997 (ed. R. A. Bailey) London Mathematical Society Lecture Note Series No. 241, pp. 1{11, Cambridge University Press 1997 doi:10.1017/CBO9780511662119.002
    • [7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, \Atlas of Finite Groups" (Clarendon Press, Oxford) 1985
    • [8] J. H. Conway and N. J. A. Sloane \Sphere packings lattices and groups" Springer-Verlag, 1988
    • [9] O. Ekenta, H. G. Jang and J. A. Siehler \Slide-and-swap permutation groups" Involve, 7(1):41{55 (2014)
    • [10] N. Elkies, J. H. Conway and J. L. Martin \The Mathieu Group M12 and its pseudogroup extension M13" Experimental Mathematics 15, (2): pp. 223{236 doi:10.1080/10586458.2006.10128958
    • [11] F. Franek \Isomorphisms of in nite Steiner triple systems" Ars Combin. 38 (1994) pp. 7{25
    • [12] N. Gill, N. I. Guillespie, A. Nixon and J. Semeraro \Generating Groups Using Hypergraphs" preprint 2014 arXiv:1405.1701
    • [13] N. Gill, N. I. Guillespie, C. E. Prager and J. Semeraro \Conway groupoids, regular two-graphs and supersimple designs" arXiv:1510.06680
    • [14] N. Gill, N. I. Guillespie, and J. Semeraro \Conway groupoids and completely transitive codes" preprint 2014 arXiv:1410.4785
    • [15] E. Girondo and G. Gonzalez-Diez \Introduction to Compact Riemann Surfaces and Dessins d'Enfants" London Mathematical Society Student Texts 79, Cambridge University Press, Cambridge, 2012
    • [16] M. J. Grannel, T. S. Griggs and J. S. Phelan \On in nite Steiner systems" Discrete Math. 97 (1991) 199{202
    • [17] P. Guillot \An elementary approach to dessins d'enfants and the Grothendieck-Teichmuller group" Enseign. Math. 60 (2014), pp. 293{375. doi: 10.4171/LEM/60-3/4-5 arXiv:1309.1968
    • [18] G. A. Jones and J. Wolfart \Dessins d'Enfants on Riemann Surfaces" Springer Monographs in Mathematics 2016
    • [19] P. Keevash \The existence of designs" preprint 2014 http://arxiv.org/pdf/1401.3665.pdf
    • [20] E. Koler \Unendliche gefaserte Steinersysteme" J. Geom. 9 (1977) 73{77
    • [21] D. L. Harden \Is there a Mathieu groupoid M 31" http://mathoverflow.net/questions/70680/is-there-a-mathieu-groupoid-m-31
    • [22] D. Livingstone \On a permutation representation of the Janko group" J. Algebra 6, (1967) pp. 43{55
    • [23] Y. Nakashima \The transitivity of Conway's M13" Discrete Mathematics 308(11) pp. 2273{ 2276 (2008)
    • [24] J. Scherphuis \Rotational puzzles on graphs" http://www.jaapsch.net/puzzles/graphpuzz.htm
    • [25] J. A. Siehler \Depth and Symmetry in Conway's M13 Puzzle" Mathematics Magazine Vol. 84, No. 4 (2011), pp. 243{256 DOI: 10.4169/math.mag.84.4.243
    • [26] R. M. Wilson \Graph puzzles, homotopy, and the alternating group" J. Combinatorial Theory Ser. B, 16:86{96 (1974)
    • [27] C. Yang \Sliding puzzles and rotating puzzles on graphs" Discrete Math. 311(14):1290{1294 (2011) Department of Economics, Mathematics & Statistics, Birkbeck, University of London, Malet Street, London, WC1E 7HX E-mail address:
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article