Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Institute of Electrical and Electronics Engineers
Languages: English
Types: Article
We present the design and fabrication of terahertz (THz) metamaterial (MM) absorbers and their monolithic integration into a commercial CMOS technology along with its respective readout electronics to produce a low-cost, uncooled and high resolution THz camera. We first describe the work done on single band and broadband MM absorbers on custom substrates then progress with a description of the integration of such resonators into a six metal layer 180 nm CMOS process and its coupling with two types of microbolometer sensors: vanadium oxide (VOx) and silicon (Si) pn diode. Additionally, we demonstrate the integration of the THz sensors with readout electronics to form a monolithic THz focal plane array (FPA). Reflection images of a metallic object hidden in a manila envelope are recorded using both the VOx and Si pn diode detectors, demonstrating the suitability of the technology for stand-off detection of concealed objects. Lastly, we present the current work towards scaling this technology into a 64 x 64 FPA.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • X.-C. Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol., vol. 47, no. 21, pp. 3667-3677, 2002.
    • K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, vol. 11, no. 20, pp. 2549-2554, Oct.
    • Technol., vol. 20, no. 7, pp. S266-S280, Jul. 2005.
    • Med. Biol., vol. 47, pp. 3853-3863, 2002.
    • A. Hall and J. M. Girkin, “A review of potential new diagnostic modalities for caries lesions.,” J. Dent. Res., vol. 83 Spec No, pp.
    • C89-C94, 2004.
    • Phys. B Laser Opt., 1999.
    • Lett., vol. 109, no. 2, pp. 21105-1-4, 2016.
    • K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electron. Express, vol. 4, no. 8, pp. 258-263, 2007.
    • R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using schottky diodes in CMOS: Array and 860-ghz pixel,” IEEE J. Solid-State Circuits, vol. 48, no.
    • 10, pp. 2296-2308, 2013.
    • R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2999- 3012, 2012.
    • D. S. Tezcan, S. Eminoglu, O. S. Akar, and T. Akin, “An uncooled microbolometer infrared focal plane array in standard CMOS,” Proc. SPIE,Photodetectors Mater. Devices VI, vol. 4288, no. 312, pp. 112-121, 2001.
    • F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays - a review,” Proc. SPIE, MEMS/MOEMS Technol. Appl. III, vol. 6836, p. 68360D-1-15, Nov. 2007.
    • NEC Corporation, “Uncooled THz Imager.” pp. 1-2, 2014.
    • Marchese, H. Jerominek, C. Alain, and A. Bergeron, “Introducing a 384x288 pixel terahertz camera core,” Proc. SPIE, Terahertz, RF, Millimeter, Submillimeter-Wave Technol. Appl. VI, vol. 8624, p.
    • 86240F-1-8, Mar. 2013.
    • Trans. A. Math. Phys. Eng. Sci., vol. 372, no. 2012, pp. 1-12, 2014.
    • V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
    • R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction.,” Science, vol. 292, no. 5514, pp. 77-9, 2001.
    • A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials, vol. 1, no. 1, pp. 2-11, Mar. 2007.
    • C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers.,” Adv. Opt. Mater., vol. 24, p.
    • OP98-OP181, Jun. 2012.
    • Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett., vol. 36, no. 8, pp. 1524-1526, Apr. 2011.
    • Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett., vol. 36, no. 6, pp. 945-947, Mar. 2011.
    • J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett., vol. 36, no. 17, pp. 3476-3478, Sep. 2011.
    • J. Grant, I. Escorcia-Carranza, C. Li, I. J. H. McCrindle, J. Gough, and D. R. S. Cumming, “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer,” Laser Photon. Rev., vol. 7, no. 6, pp. 1043-1048, Nov. 2013.
    • I. Escorcia, J. Grant, J. Gough, and D. R. S. Cumming, “Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode,” Opt. Lett., vol. 41, no. 14, pp. 3261-3264, 2016.
    • IEEE Trans., vol. 5, no. 6, pp. 892-901, 2015.
    • J. Grant, I. J. H. Mccrindle, C. Li, and D. R. S. Cumming, “Multispectral metamaterial absorber,” Opt. Lett., vol. 39, no. 5, pp.
    • I. J. H. McCrindle, J. Grant, T. D. Drysdale, and D. R. Cumming, “Multi-spectral materials: Hybridisation of optical plasmonic filters and a terahertz metamaterial absorber,” Adv. Opt. Mater., vol. 2, no.
    • 2, pp. 149-153, 2014.
    • Express, vol. 24, no. 4, p. 3451, Feb. 2016.
  • No similar publications.

Share - Bookmark

Cite this article