LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer Netherlands
Languages: English
Types: Part of book or chapter of book
Subjects: QR
While many multicellular anaerobes possess mitochondria that resemble those of aerobic eukaryotes, microbial eukaryotes that live exclusively in anoxic and low oxygen environments harbor mitochondrion-related organelles (MROs). Currently, these organelles are broadly classified as either hydrogenosomes (anaerobic ATP-producing organelles that produce molecular hydrogen) or mitosomes (organelles that do not generate ATP); however, ongoing studies of diverse microbial lineages are revealing a wider spectrum of functional types. In adaptation to low oxygen conditions, the MROs of anaerobic eukaryotes have acquired unique characteristics, some of which do not appear to derive from the α-proteobacterium that gave rise to the ancestral mitochondrion. These characteristics include alternative pathways for pyruvate metabolism as well as enzymes such as [FeFe]-hydrogenases that collectively function in anaerobic energy metabolism. In addition to these pathways, the mitochondrial protein import, metabolic exchange, and Fe–S cluster biosynthesis machineries are present in all MROs studied to date; these systems support the protein, solute, and energy requirements of both the organelles and the cells that harbor them. MROs represent a unique class of organelles that have successfully adapted by reduction or alteration of existing pathways as well as by acquisition of novel metabolic machineries that allowed their hosts to thrive in diverse environments without oxygen.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article