LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier Science
Languages: English
Types: Article
Subjects:
An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) A simple urban route; (2) A combined urban/inter-urban route; and, (3) An urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NOx emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • U1,...,U N , unique up to an increasing monotone 0 m 1 m Small, K.A. and Rosen, H.S. (1981) Applied welfare economics with discrete choice models. Econometrica, 49 (1), pp105 130.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article