LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Automatic Control and Systems Engineering, University of Sheffield
Languages: English
Types: Book
Subjects:
Increasingly, personalised robots — robots especially\ud designed and programmed for an individual’s needs\ud and preferences — are being used to support humans in\ud their daily lives, most notably in the area of service robotics. Arguably, the closer the robot is programmed to the individual’s needs, the more useful it is, and we believe that giving people the opportunity to program their own robots, rather than programming robots for them, will push robotics research one step further in the personalised robotics field. However, traditional robot programming techniques require specialised technical skills from different disciplines and it is not reasonable to expect end-users to have these skills. In this paper, we therefore present a new method of obtaining robot control code — programming by demonstration through system identification which algorithmically and automatically transfers human behaviours into robot control code, using transparent, analysable mathematical functions. Besides providing a simple means of generating perception-action mappings, they have the additional advantage that can also be used to form hypotheses and theoretical analysis of robot behaviour. We demonstrate the viability of this approach by teaching a Scitos G5 mobile robot to achieve wall following and corridor passing behaviours.

Share - Bookmark

Cite this article