Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Optical Society of America
Languages: English
Types: Article
Subjects: QC
Fabrication and electrical and optical characterization of 4H-SiC Schottky UV photodetectors with nickel silicide interdigitated contacts is reported. Dark capacitance and current measurements as a function of applied voltage over the temperature range 20 °C – 120 °C are presented. The results show consistent performance among devices. Their leakage current density, at the highest investigated temperature (120 °C), is in the range of nA/cm2 at high internal electric field. Properties such as barrier height and ideality factor are also computed as a function of temperature. The responsivities of the diodes as functions of applied voltage were measured using a UV spectrophotometer in the wavelength range 200 nm - 380 nm and compared with theoretically calculated values. The devices had a mean peak responsivity of 0.093 A/W at 270 nm and −15 V reverse bias.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 14. M. Mazzillo, G. Condorelli, M. E. Castagna, G. Catania, A. Sciuto, F. Roccaforte, and V. Raineri, “Highly efficient low reverse biased 4H-SiC Schottky photodiodes for UV-light detection,” IEEE Photon. Technol. Lett. 21(23), 1782-1784 (2009).
    • 15. M. Mazzillo, A. Sciuto, F. Roccaforte, and V. Raineri, “4H-SiC Schottky photodiodes for ultraviolet light detection,” in IEEE Nuclear Science Symposium and Medical Imaging Conference, (2011), pp. 1642-1646.
    • 16. M. Mazzillo, A. Sciuto, G. Catania, F. Roccaforte, and V. Raineri, “Temperature and light induced effects on the capacitance of 4H-SiC Schottky photodiodes,” IEEE Sens. J. 12(5), 1127-1130 (2012).
    • 17. G. Adamo, D. Agro, S. Stivala, A. Parisi, L. Curcio, A. Ando, A. Tomasino, C. Giaconia, A. C. Busacca, M. C. Mazzillo, D. Sanfilippo, and G. Fallica, “Responsivity measurements of silicon carbide Schottky photodiodes in the UV range,” in Third Mediterranean Photonics Conference, (IEEE, 2014), pp. 1-3
    • 18. G. Gramberg, “Temperature dependence of space charge capacitance of silicon carbide diodes,” Solid-State Electron. 14(11), 1067-1070 (1971).
    • 19. S. M. Sze, Physics of Semiconductor Devices. (John Wiley & Sons 1981).
    • 20. S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current‐voltage characteristics,” Appl. Phys. Lett. 49(2), 85-87 (1986).
    • 21. F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, “Richardson's constant in inhomogeneous silicon carbide Schottky contacts,” J. Appl. Phys. 93(11), 9137-9144 (2003).
    • 22. R. T. Tung, “Electron transport of inhomogeneous Schottky barriers,” Appl. Phys. Lett. 58(24), 2821-2823 (1991).
    • 23. G. Bertuccio, S. Caccia, D. Puglisi, and D. Macera, “Advances in silicon carbide X-ray detectors,” Nucl. Instrum. Methods Phys. Res. A 652(1), 193-196 (2011).
    • 24. J. A. Kittl, M. A. Pawlak, A. Lauwers, C. Demeurisse, K. Opsomer, K. G. Anil, C. Vrancken, M. J. H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans, “Work function of Ni Silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates,” IEEE Electron Device Lett. 27(1), 34-36 (2006).
    • 25. F. Roccaforte, F. La Via, A. La Magna, S. Di Franco, and V. Raineri, “Silicon carbide pinch rectifiers using a dual-metal Ti-Ni2Si Schottky barrier,” IEEE Trans. Electron. Dev. 50(8), 1741-1747 (2003).
    • 26. Anon, “Broadband SiC based UV photodiode A = 0.50 mm2, SG01D-18,” Rev.6.0, SGlux SolGel Technologies GmbH, Berlin, Germany. N.D.
    • 27. Anon, “Broadband SiC based UV photodiode A = 1.00 mm2, SG01L-18,” Rev.6.0, SGlux SolGel Technologies GmbH, Berlin, Germany. N.D.
    • 28. S. G. Sridhara, R. P. Devaty, and W. J. Choyke, “Absorption coefficient of 4H silicon carbide from 3900 to 3250 Å,” J. Appl. Phys. 84(5), 2963-2964 (1998).
    • 29. G. Brezeanu, F. Udrea, A. Mihaila, G. Amaratunga, J. Millan, P. Godignon, M. Badila, F. Draghici, C. Boianceanu, and M. Brezeanu, “Numerical and analytical study of 6H-SiC detectors with high UV performance,” in Proceedings of Semiconductor Conference, (2002), pp. 185-188.
    • 30. K. S. Park, “High quantum-efficiency 4H-SiC UV photodiode,” J. Korean Phys. Soc. 30(1), 123-130 (1997).
    • 31. H. Y. Cha and P. M. Sandvik, “Electrical and optical modeling of 4H-SiC avalanche photodiodes,” Jpn. J. Appl. Phys. 47(7), 5423-5425 (2008).
    • 32. A. Sciuto, M. Mazzillo, P. Badala, M. Scuderi, B. Carbone, and S. Coffa, “Thin metal film Ni2Si/4H-SiC vertical Schottky photodiodes,” IEEE Photon. Technol. Lett. 26(17), 1782-1785 (2014).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article