LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier BV
Journal: Applied Catalysis B: Environmental
Languages: English
Types: Article
Subjects: Environmental Science(all), Process Chemistry and Technology, Catalysis

Classified by OpenAIRE into

mesheuropmc: equipment and supplies, technology, industry, and agriculture
Iridium nanoparticles deposited on a variety of surfaces exhibited thermal sintering characteristics that were very strongly correlated with the lability of lattice oxygen in the supporting oxide materials. Specifically, the higher the lability of oxygen ions in the support, the greater the resistance of the nanoparticles to sintering in an oxidative environment. Thus with γ-Al2O3 as the support, rapid and extensive sintering occurred. In striking contrast, when supported on gadolinia-ceria and alumina-ceria-zirconia composite, the Ir nanoparticles underwent negligible sintering. In keeping with this trend, the behavior found with yttria-stabilized zirconia was an intermediate between the two extremes. This resistance, or lack of resistance, to sintering is considered in terms of oxygen spillover from support to nanoparticles and discussed with respect to the alternative mechanisms of Ostwald ripening versus nanoparticle diffusion. Activity towards the decomposition of N2O, a reaction that displays pronounced sensitivity to catalyst particle size (large particles more active than small particles), was used to confirm that catalytic behavior was consistent with the independently measured sintering characteristics. It was found that the nanoparticle active phase was Ir oxide, which is metallic, possibly present as a capping layer. Moreover, observed turnover frequencies indicated that catalyst-support interactions were important in the cases of the sinter-resistant systems, an effect that may itself be linked to the phenomena that gave rise to materials with a strong resistance to nanoparticle sintering.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Skaurai, H. Nishino, D.N. Futaba, S. Yasuda, T. Yamada, A. Maigne, Y. Matsuo, E. Nakamura, M. Yumura, H. Hata, J. Am. Chem. Soc. 134 (2012) 2148-2153.
    • [2] A.D. Benavidez, L. Kovarik, A. Genc, N. Agrawal, E.M. Larsson, T.W. Hansen, A.M. Karim, A.K. Datye, ACS Catal. 2 (2012) 2349-2356.
    • [3] S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, J. Catal. 281 (2011) 147-155.
    • [4] Z. Huang, X. Gu, Q. Cao, P. Hu, J. Hao, J. Li, X. Tang, Angew. Chem. Int. Ed. 51 (2012) 4198-4203.
    • [5] R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo, J. Mol. Catal. A: Chem. 228 (2005) 27-33.
    • [6] R.B. Grant, R.M. Lambert, J. Catal. 92 (1985) 364-375.
    • [7] Y. Nagai, K. Dohmae, Y. Ikeda, N. Takagi, T. Tanabe, N. Hara, G. Guilera, S. Pascarelli, M.A. Newton, O. Kuno, H. Jiang, H. Shinjoh, S. Matsumoto, Angew. Chem. Int. Ed. 47 (2008) 9303-9306.
    • [8] M.A. Newton, C. Belver-Coldeira, A. Martínez-Arias, M. Fernádez-Garcia, Nat. Mater. 6 (2007) 528-532.
    • [9] P. Granger, V.I. Parvulescu, Chem. Rev. 111 (2011) 3155-3207.
    • [10] T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Acc. Chem. Res. 46 (2013) 1720-1730.
    • [11] S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, S. Helveg, J. Am. Chem. Soc. 132 (2010) 7968-7975.
    • [12] A.T. Delariva, T.W. Hansen, S.R. Challa, A.K. Datye, J. Catal. 308 (2013) 291-305.
    • [13] W.-Z. Li, L. Kovarik, D. Mei, M.H. Engelhard, F. Gao, J. Liu, Y. Wang, C.H.F. Peden, Chem. Mater. 26 (2014) 5475-5481.
    • [14] Q. Lin, Y. Huang, Y. Wang, L. Li, X.Y. Liu, F. Lv, A. Wang, W.-C. Lia, T. Zhang, J. Mater. Chem. A 2 (2014) 5178-5181.
    • [15] J.C. Summers, S.A. Ausen, J. Catal. 58 (1979) 131-143.
    • [16] M. Hatanaka, N. Takahashi, N. Takahashi, T. Tanabe, Y. Nagai, A. Suda, H. Shinjoh, J. Catal. 266 (2009) 182-190.
    • [17] H. Hirata, K. Kishita, Y. Nagai, K. Dohmae, H. Shinjoh, S. Matsumoto, Catal. Today 164 (2011) 467-473.
    • [18] S.J. Skinner, J.A. Kilner, Mater. Today 6 (2003) 30-37.
    • [19] P. Vernoux, L. Lizarraga, M.N. Tsampas, F.M. Sapountzi, A. De Lucas-Consuegra, J.L. Valverde, S. Souentie, C.G. Vayenas, D. Tsiplakides, S. Balomenou, E.A. Baranova, Chem. Rev. 113 (2013) 8192-8260.
    • [20] J.-H. Lee, S.M. Yoon, B.-K. Kim, H.-W. Lee, H.S. Song, J. Mater. Sci. 37 (2002) 1165-1171.
    • [21] H. He, H.X. Dai, C.T. Au, Catal. Today 90 (2004) 245-254.
    • [22] D. Duprez, C. Descorme, T. Birchem, E. Rohart, Top. Catal. 16/17 (2001) 49-56.
    • [23] G. Chiodelli, G. Flor, M. Scagliotti, Solid State Ionics 91 (1996) 109-121.
    • [24] Y. Madier, C. Descorme, A.M. Le Govic, D. Duprez, J. Phys. Chem. B 103 (1999) 10999-11006.
    • [25] A. Papavasiliou, A. Tsetsekou, V. Matsuka, M. Konsolakis, I.V. Yentekakis, Appl. Catal. A Gen. 382 (2010) 73-84.
    • [26] D.J. Wuebbles, Science 326 (2009) 56-57.
    • [27] A.R. Ravishankara, J.S. Daniel, R.W. Portmann, Science 326 (2009) 123-125.
    • [28] S.A. Montzka, E.J. Dlugokencky, J.H. Butler, Nature 476 (2011) 43-50.
    • [29] L. Li, J. Xu, J. Hu, J. Han, Environ. Sci. Technol. 48 (2014) 5290-5297.
    • [30] C. Kroeze, Sci. Total Environ. 143 (1994) 193-209.
    • [31] F.J. Kapteijn, J. Rodriguez-Mirasol, J.A. Moulijn, Appl. Catal. B Environ. 9 (1996) 25-64.
    • [32] G. Centi, A. Galli, B. Montanari, S. Perathoner, A. Vaccari, Catal. Today 35 (1997) 113-120.
    • [33] G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli, M. Mantegazza, Adv. Environ. Res. 4 (2000) 325-338.
    • [34] W.B. Tolman, Angew. Chem. Int. Ed. 49 (2010) 1018-1024.
    • [35] M. Konsolakis, ACS Catal. 5 (2015) 6397-6421.
    • [36] C. Ohnishi, S. Iwamoto, M. Inoue, Chem. Eng. Sci. 63 (2008) 5076-5082.
    • [37] S. Liu, Y. Cong, Y. Huang, X. Zhao, T. Zhang, Catal. Today 175 (2011) 264-270.
    • [38] K. Yuzaki, T. Yarimizu, S. Ito, K. Kunimori, Catal. Lett. 47 (1997) 173-175.
    • [39] A. Bueno-López, I. Such-Basán˜ez, C.J. Salinas-Martínez de Lecea, J. Catal. 244 (2006) 102-112.
    • [40] H. Beyer, J. Emmerich, K. Chatziapostolou, K. Kohler, Appl. Catal. A Gen. 391 (2011) 411-416.
    • [41] M. Konsolakis, C. Drosou, I.V. Yentekakis, Appl. Catal. B Environ. 123-124 (2012) 405-413.
    • [42] E. Pachatouridou, E. Papista, E.F. Iliopoulou, A. Delimitis, G. Goula, I.V. Yentekakis, G.E. Marnellos, M. Konsolakis, J. Environ. Chem. Eng. 3 (2015) 815-821.
    • [43] P.C. Flynn, S.E. Wanke, J. Catal. 34 (1974) 400-410.
    • [44] C.G. Vayenas, S. Brosda, C.J. Pliangos, J. Catal. 216 (2003) 487-504.
    • [45] J. Nicole, D. Tsiplakides, C. Pliangos, X.E. Verykios, C. Comninellis, C.G. Vayenas, J. Catal. 204 (2001) 23-34.
    • [46] J. Nicole, C. Comninellis, J. Appl. Electrochem. 28 (1998) 223-226.
    • [47] S. Peng-Ont, S. Souentie, S. Assabumrungrat, P. Praserthdam, S. Brosda, C.G. Vayenas, Ionics 19 (2013) 1705-1714.
    • [48] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S. Matsumoto, J. Catal. 242 (2006) 103-109.
    • [49] I.V. Yentekakis, R.M. Lambert, M. Konsolakis, N. Kallithrakas-Kontos, Catal. Lett. 81 (2002) 181-185.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article