LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Heart Association
Languages: English
Types: Article
Subjects:

Background and Purpose: The optimal management of blood pressure (BP) in acute stroke remains unclear. For ischemic stroke treated with intravenous thrombolysis, current guidelines suggest pharmacological intervention if systolic BP exceeds 180 mm Hg. We determined retrospectively the association of BP and antihypertensive therapy with clinical outcomes after stroke thrombolysis.

\ud \ud

Methods: The SITS thrombolysis register prospectively recorded 11 080 treatments from 2002 to 2006. BP values were recorded at baseline, 2 hours, and 24 hours after thrombolysis. Outcomes were symptomatic (National Institutes of Health Stroke Scale score deterioration ≥4) intracerebral hemorrhage Type 2, mortality, and independence at (modified Rankin Score 0 to 2) 3 months. Patients were categorized by history of hypertension and antihypertensive therapy within 7 days after thrombolysis: Group 1, hypertensive treated with antihypertensives (n=5612); Group 2, hypertensive withholding antihypertensives (n=1573); Group 3, without history of hypertension treated with antihypertensives (n=995); and Group 4, without history of hypertension not treated with antihypertensives (n=2632). For 268 (2.4%) patients, these data were missing. Average systolic BP 2 to 24 hours after thrombolysis was categorized by 10-mm Hg intervals with 100 to 140 used as a reference.

\ud \ud

Results: In multivariable analysis, high systolic BP 2 to 24 hours after thrombolysis as a continuous variable was associated with worse outcome (P<0.001) and as a categorical variable had a linear association with symptomatic hemorrhage and a U-shaped association with mortality and independence with systolic BP 141 to 150 mm Hg associated with most favorable outcomes. OR (95% CI) from multivariable analysis showed no difference in symptomatic hemorrhage (1.09 [0.83 to 1.51]; P=0.58) and independence (1.03 [0.93 to 1.10]; P=0.80) but lower mortality (0.82 [0.73 to 0.92]; P=0.0007) for Group 1 compared with Group 4. Group 2 had a higher symptomatic hemorrhage (1.86 [1.34 to 2.68]; P=0.0004) and mortality (1.62 [1.41 to 1.85]; P<0.0001) and lower independence (0.89 [0.80 to 0.99]; P=0.04) compared with Group 4. Group 3 had similar results as Group 1.

\ud \ud

Conclusions: There is a strong association of high systolic BP after thrombolysis with poor outcome. Withholding antihypertensive therapy up to 7 days in patients with a history of hypertension was associated with worse outcome, whereas initiation of antihypertensive therapy in newly recognized moderate hypertension was associated with a favorable outcome.

  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis. 2008;25:457-507.
    • 2. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation. 2007;115: e478 - e534.
    • 3. Wallace JD, Levy LL. Blood pressure after stroke. JAMA. 1981;246: 2177-2180.
    • 4. Britton M, Carlsson A, de Faire U. Blood pressure course in patients with acute stroke and matched controls. Stroke. 1986;17:861- 864.
    • 5. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231-240.
    • 6. Olsen TS, Larsen B, Herning M, Skriver EB, Lassen NA. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke. Stroke. 1983;14: 332-341.
    • 7. Powers WJ. Acute hypertension after stroke: the scientific basis for treatment decisions. Neurology. 1993;43:461- 467.
    • 8. Wahlgren NG, MacMahon DG, Keyser JD, Indredavik B, Ryman T; for the INWEST study group. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke. Cerebrovasc Dis. 1994;4:204 -210.
    • 9. Ahmed N, Nasman P, Wahlgren NG. Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke. 2000;31: 1250 -1255.
    • 10. Fogelholm R, Palomaki H, Erila T, Rissanen A, Kaste M. Blood pressure, nimodipine, and outcome of ischemic stroke. Acta Neurol Scand. 2004; 109:200 -204.
    • 11. Chamorro A, Vila N, Ascaso C, Elices E, Schonewille W, Blanc R. Blood pressure and functional recovery in acute ischemic stroke. Stroke. 1998; 29:1850 -1853.
    • 12. Geeganage C, Bath PM. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev. 2008;8: CD000039.
    • 13. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581-1587.
    • 14. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke. 1997;28: 2109 -2118.
    • 15. Brott T, Lu M, Kothari R, Fagan SC, Frankel M, Grotta JC, Broderick J, Kwiatkowski T, Lewandowski C, Haley EC, Marler JR, Tilley BC. Hypertension and its treatment in the NINDS rt-PA Stroke Trial. Stroke. 1998;29:1504 -1509.
    • 16. Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in StrokeMonitoring Study (SITS-MOST): an observational study. Lancet. 2007; 369:275-282.
    • 17. Wahlgren N, Ahmed N, Davalos A, Hacke W, Millan M, Muir K, Roine RO, Toni D, Lees KR. Thrombolysis with alteplase 3- 4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet. 2008;372: 1303-1309.
    • 18. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317-1329.
    • 19. SITS-ISTR (Safe Implementation of Thrombolysis in Stroke-International Stroke Thrombolysis Register). Available at: www.acutestroke.org. Accessed December 22, 2007.
    • 20. Wardlaw JM, Zoppo G, Yamaguchi T, Berge E. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2003;3:CD000213.
    • 21. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17:857- 872.
    • 22. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33: 1315-1320.
    • 23. Muir KW, Lees KR, Ford I, Davis S. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet. 2004;363:439 - 445.
    • 24. Lindsberg PJ, Soinne L, Roine RO, Salonen O, Tatlisumak T, Kallela M, Happola O, Tiainen M, Haapaniemi E, Kuisma M, Kaste M. Community-based thrombolytic therapy of acute ischemic stroke in Helsinki. Stroke. 2003;34:1443-1449.
    • 25. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Davalos A, Erila T, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kohrmann M, Larrue V, Lees KR, Machnig T, Roine RO, Toni D, Vanhooren G. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in StrokeMOnitoring STudy (SITS-MOST). Stroke. 2008;39:3316 -3322.
    • 26. Yong M, Diener HC, Kaste M, Mau J. Characteristics of blood pressure profiles as predictors of long-term outcome after acute ischemic stroke. Stroke. 2005;36:2619 -2625.
    • 27. Yong M, Kaste M. Association of characteristics of blood pressure profiles and stroke outcomes in the ECASS-II trial. Stroke. 2008;39: 366 -372.
    • 28. Mattle HP, Kappeler L, Arnold M, Fischer U, Nedeltchev K, Remonda L, Jakob SM, Schroth G. Blood pressure and vessel recanalization in the first hours after ischemic stroke. Stroke. 2005;36:264 -268.
    • 29. Labiche LA, Al-Senani F, Wojner AW, Grotta JC, Malkoff M, Alexandrov AV. Is the benefit of early recanalization sustained at 3 months? A prospective cohort study. Stroke. 2003;34:695- 698.
    • 30. Saqqur M, Molina CA, Salam A, Siddiqui M, Ribo M, Uchino K, Calleja S, Garami Z, Khan K, Akhtar N, O'Rourke F, Shuaib A, Demchuk AM, Alexandrov AV. Clinical deterioration after intravenous recombinant tissue plasminogen activator treatment: a multicenter transcranial Doppler study. Stroke. 2007;38:69 -74.
    • 31. Tsivgoulis G, Saqqur M, Sharma VK, Lao AY, Hill MD, Alexandrov AV. Association of pretreatment blood pressure with tissue plasminogen activator-induced arterial recanalization in acute ischemic stroke. Stroke. 2007;38:961-966.
    • 32. Aslanyan S, Fazekas F, Weir CJ, Horner S, Lees KR. Effect of blood pressure during the acute period of ischemic stroke on stroke outcome: a tertiary analysis of the GAIN International Trial. Stroke. 2003;34:2420 -2425.
    • 33. Castillo J, Leira R, Garcia MM, Serena J, Blanco M, Davalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. Stroke. 2004;35:520 -526.
    • 34. Vemmos KN, Spengos K, Tsivgoulis G, Zakopoulos N, Manios E, Kotsis V, Daffertshofer M, Vassilopoulos D. Factors influencing acute blood pressure values in stroke subtypes. J Hum Hypertens. 2004;18:253-259.
    • 35. COSSACS Trial Group. COSSACS (Continue or Stop post-Stroke Antihypertensives Collaborative Study): rationale and design. J Hypertens. 2005;23:455- 458.
    • 36. ENOS Trial Investigators. Glyceryl trinitrate vs control, and continuing vs. stopping temporarily prior antihypertensive therapy, in acute stroke: rationale and design of the Efficacy of Nitric Oxide in Stroke (ENOS) trial (ISRCTN99414122). Int J Stroke. 2006;1:245-249.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article