LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Ammons Scientific
Languages: English
Types: Article
Subjects:
The objective of this study was to evaluate the effect of gait imagery tasks on lowerlimb muscle activity with respect to body posture. The sitting and standing position and lower limb muscle activity were evaluated in 27 healthy female students (24.4±1.3 years, 167.2±5.2 cm, 60.10±6.4 kg). Surface electromyography was assessed during rest and in three different experimental conditions using mental imagery. These included a rhythmic gait, rhythmic gait simultaneously with observation of a model, and rhythmic gait after performing rhythmic gait. The normalized root mean square EMG values with respect to corresponding rest position were compared using non-parametric statistics. Standing gait imagery tasks had facilitatory effect on proximal lower limb muscle activity. However, electromyography activity of distal leg muscles decreased for all gait imagery tasks in the sitting position, when the proprioceptive feedback was less appropriate. For subsequent gait motor imagery tasks, the muscle activity decreased, probably as result of habituation. In conclusion, the effect of motor imagery on muscle activity appears to depend on relative strength of facilitatory and inhibitory inputs.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bakker, F. C., Boschker, M. S. J., & Chung, T. (1996) Changes in muscular activity while imagining weight lifting using stimulus or response propositions. Journal of Sport & Exercise Psychology, 18(3), 313-324.
    • Bakker, M., de Lange, F. P., Stevens, J. A., Toni, I., & Bloem, B. R. (2007) Motor imagery of gait: a quantitative approach. Exp Brain Res, 179(3), 497-504.
    • Bakker, M., Overeem, S., Snijders, A. H., Borm, G., van Elswijk, G., Toni, I., & Bloem, B. R. (2008) Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability. Clin Neurophysiol, 119(11), 2519-2527.
    • Bonnet, M., Decety, J., Jeannerod, M., & Requin, J. (1997) Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Brain Res Cogn Brain Res, 5(3), 221-228.
    • Brouwer, B., & Ashby, P. (1991) Altered corticospinal projections to lower limb motoneurons in subjects with cerebral palsy. Brain, 114 ( Pt 3), 1395-1407.
    • Bussel, B., Roby-Brami, A., Neris, O. R., & Yakovleff, A. (1996) Evidence for a spinal stepping generator in man. Electrophysiological study. Acta Neurobiol Exp (Wars), 56(1), 465-468.
    • Calancie, B., Needham-Shropshire, B., Jacobs, P., Willer, K., Zych, G., & Green, B. A. (1994) Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain, 117 ( Pt 5), 1143-1159.
    • Clark, B. C., Mahato, N., Nakazawa, M., Law, T., & Thomas, J. (2014) The Power of the Mind: The Cortex as a Critical Determinant of Muscle Strength/Weakness. J Neurophysiol, jn 00386 02014.
    • Cowan, J. M., Day, B. L., Marsden, C., & Rothwell, J. C. (1986) The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man. J Physiol, 377, 333-347.
    • Cowley, P. M., Clark, B. C., & Ploutz-Snyder, L. L. (2008) Kinesthetic motor imagery and spinal excitability: the effect of contraction intensity and spatial localization. Clin Neurophysiol, 119(8), 1849-1856.
    • Demougeot, L., & Papaxanthis, C. (2011) Muscle fatigue affects mental simulation of action. J Neurosci, 31(29), 10712-10720.
    • Dickstein, R., Gazit-Grunwald, M., Plax, M., Dunsky, A., & Marcovitz, E. (2005) EMG activity in selected target muscles during imagery rising on tiptoes in healthy adults and poststroke hemiparetic patients. J Mot Behav, 37(6), 475-483.
    • Dietz, V. (2003) Spinal cord pattern generators for locomotion. Clin Neurophysiol, 114(8), 1379- 1389.
    • Dietz, V. (2010) Behavior of spinal neurons deprived of supraspinal input. Nat Rev Neurol, 6(3), 167- 174.
    • Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., & Deutsch, J. E. (2008) Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Arch Phys Med Rehabil, 89(8), 1580-1588.
    • El-Wishy, A. A., & Fayez, E. S. (2013) Effect of Locomotor Imagery Training Added to Physical Therapy Program on Gait Performance in Parkinson Patients: A Randomized Controlled Study. Egyptian Journal of Neurology, Psychiatry & Neurosurgery, 50(1), 31.
    • Gentili, R., Papaxanthis, C., & Pozzo, T. (2006) Improvement and generalization of arm motor performance through motor imagery practice. Neuroscience, 137(3), 761-772.
    • Gregg, M., Hall, C., & Butler, A. (2010) The MIQ-RS: A Suitable Option for Examining Movement Imagery Ability. Evid Based Complement Alternat Med, 7(2), 249-257.
    • Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., & Collet, C. (2012) Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front Hum Neurosci, 6, 247.
    • Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., & Collet, C. (2007) Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol, 66(1), 18-27.
    • Hall, C. R., & Martin, K. A. (1997) Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. . Journal of Mental Imagery, 21(1-2), 143-154.
    • Harkema, S. J., Hurley, S. L., Patel, U. K., Requejo, P. S., Dobkin, B. H., & Edgerton, V. R. (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol, 77(2), 797-811.
    • Heremans, E., Nieuwboer, A., Spildooren, J., De Bondt, S., D'Hooge A, M., Helsen, W., & Feys, P. (2012) Cued motor imagery in patients with multiple sclerosis. Neuroscience, 206, 115-121.
    • Hetu, S., Gregoire, M., Saimpont, A., Coll, M. P., Eugene, F., Michon, P. E., & Jackson, P. L. (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev, 37(5), 930-949.
    • Hiraoka, K. (2002) Imagining stumbling inhibits motor-evoked potentials in the soleus muscle. Int J Neurosci, 112(6), 613-622.
    • Hwang, S., Jeon, H. S., Yi, C. H., Kwon, O. Y., Cho, S. H., & You, S. H. (2010) Locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial. Clin Rehabil, 24(6), 514-522.
    • Chvatal, S. A., & Ting, L. H. (2012) Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci, 32(35), 12237-12250.
    • Jeannerod, M. (2006) The origin of voluntary action: history of a physiological concept. C R Biol, 329(5-6), 354-362.
    • Kato, K., Watanabe, J., Muraoka, T., & Kanosue, K. (2015) Motor imagery of voluntary muscle relaxation induces temporal reduction of corticospinal excitability. Neurosci Res, 92, 39-45.
    • Koehler, S., Egetemeir, J., Stenneken, P., Koch, S. P., Pauli, P., Fallgatter, A. J., & Herrmann, M. J. (2012) The human execution/observation matching system investigated with a complex everyday task: a functional near-infrared spectroscopy (fNIRS) study. Neurosci Lett, 508(2), 73-77.
    • la Fougere, C., Zwergal, A., Rominger, A., Forster, S., Fesl, G., Dieterich, M., . . . Jahn, K. (2010) Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. Neuroimage, 50(4), 1589-1598.
    • Li, S., Kamper, D. G., Stevens, J. A., & Rymer, W. Z. (2004) The effect of motor imagery on spinal segmental excitability. J Neurosci, 24(43), 9674-9680.
    • Lotze, M., & Halsband, U. (2006) Motor imagery. J Physiol Paris, 99(4-6), 386-395.
    • MacKay-Lyons, M. (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther, 82(1), 69-83.
    • McCrea, D. A. (2001) Spinal circuitry of sensorimotor control of locomotion. J Physiol, 533(Pt 1), 41-50.
    • Mizuguchi, N., Sakamoto, M., Muraoka, T., Moriyama, N., Nakagawa, K., Nakata, H., & Kanosue, K. (2012) Influence of somatosensory input on corticospinal excitability during motor imagery. Neurosci Lett, 514(1), 127-130.
    • Mizuguchi, N., Yamagishi, T., Nakata, H., & Kanosue, K. (2015) The effect of somatosensory input on motor imagery depends upon motor imagery capability. Front Psychol, 6, 104.
    • Nedelko, V., Hassa, T., Hamzei, F., Schoenfeld, M. A., & Dettmers, C. (2012) Action imagery combined with action observation activates more corticomotor regions than action observation alone. J Neurol Phys Ther, 36(4), 182-188.
    • Oku, K., Ishida, H., Okada, Y., & Hiraoka, K. (2011) Facilitation of corticospinal excitability during motor imagery of wrist movement with visual or quantitative inspection of EMG activity. Percept Mot Skills, 113(3), 982-994.
    • Oostra, K. M., Oomen, A., Vanderstraeten, G., & Vingerhoets, G. (2015) Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial. J Rehabil Med, 47(3), 204-209.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article