Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Muñoz Criollo, José Javier; Cleall, Peter John; Rees, Stephen William (2016)
Publisher: Elsevier
Journal: Geomechanics for Energy and the Environment
Languages: English
Types: Article
Subjects: TA
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Florides G, Kalogirou S. Ground heat exchangers-A review of systems, models and applications. Renew Energy. 2007;32(15): 2461-2478. http://dx.doi.org/10.1016/j.renene.2006.12.014.
    • [2] Wood CJ, Liu H, Riffat SB. An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building. In: The 3rd International Conference on Sustainable Energy and Environmental Protection, SEEP 2009. Energy. 2010;35(12):4932-4940. http://dx.doi.org/10.1016/j.energy.2010.08.032.
    • [3] Rees SW, Adjali MH, Zhou Z, Davies M, Thomas HR. Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable Sustainable Energy Rev. 2000;4(3):213-265. http://dx.doi.org/10.1016/S1364-0321(99)00018-0.
    • [4] Zoras S. A review of building earth-contact heat transfer. Adv Build Energy Res. 2009;3(1):289-314. http://dx.doi.org/10.3763/ aber.2009.0312.
    • [5] Carder DR, Barker KJ, Hewitt MG, Ritter D, Kiff A. Performance of an interseasonal heat transfer facility for collection, storage and re-use of solar heat from the road surface. Performance of an Interseasonal Heat Transfer Facility for Collection, Storage and Re-Use of Solar Heat from the Road Surface, Vol. 1, no. 1, 2007, pp. 1-114.
    • [6] Ma X, Cheng B, Liu W, Li J. Simulation and analysis on the initial temperature profiles in soils. In: IEEE International Conference on Sustainable Energy Technologies, 2008. ICSET 2008, 2008, pp. 253-256. http://dx.doi.org/10.1109/ICSET.2008.4747012.
    • [7] Qin Z, Berliner P, Karnieli A. Numerical solution of a complete surface energy balance model for simulation of heat fluxes and surface temperature under bare soil environment. Appl Math Comput. 2002; 130(1):171-200. http://dx.doi.org/10.1016/S0096-3003(01)00089- 3.
    • [8] Rajeev P, Chan D, Kodikara J. Ground-atmosphere interaction modelling for long-term prediction of soil moisture and temperature. Can Geotech J. 2012;49(9):1059-1073. http://dx.doi.org/10.1139/t2012- 068.
    • [9] Liu C, Shi B, Tang C, Gao L. A numerical and field investigation of underground temperatures under Urban heat Island. Build Environ. 2011;46(5):1205-1210. http://dx.doi.org/10.1016/j.buildenv.2010. 12.015.
    • [10] Yumrutaş R, Kanoğlu M, Bolatturk A, Bedir MŞ. Computational model for a ground coupled space cooling system with an underground energy storage tank. Energy Build. 2005;37(4):353-360. http://dx.doi.org/10.1016/j.enbuild.2004.07.004.
    • [11] Shang Y, Li S, Li H. Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump. Energy Build. 2011; 43(4):935-943. http://dx.doi.org/10.1016/j.enbuild.2010.12.017.
    • [12] Wu Y, Gan G, Verhoef A, Vidale PL, Gonzalez RG. Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers. Appl Therm Eng. 2010;30(16): 2574-2583. http://dx.doi.org/10.1016/j.applthermaleng.2010.07. 008.
    • [13] Esen H, Inalli M, Esen M. Numerical and experimental analysis of a horizontal ground-coupled heat pump system. Build Environ. 2007;42(3):1126-1134. http://dx.doi.org/10.1016/j.buildenv.2005. 11.027.
    • [14] Inallı M, Esen H. Experimental thermal performance evaluation of a horizontal ground-source heat pump system. Appl Therm Eng. 2004; 24(14-15):2219-2232. http://dx.doi.org/10.1016/j.applthermaleng. 2004.01.005.
    • [15] Congedo PM, Colangelo G, Starace G. CFD simulations of horizontal ground heat exchangers: A comparison among different configurations. Appl Therm Eng. 2012;33-34(February):24-32. http://dx.doi.org/10.1016/j.applthermaleng.2011.09.005.
    • [16] Ramírez-Dávila L, Xamán J, Arce J, Álvarez G, Hernández-Pérez I. Numerical study of earth-to-air heat exchanger for three different climates. Energy Build. 2014;76(June):238-248. http://dx.doi.org/10. 1016/j.enbuild.2014.02.073.
    • [17] Muñoz Criollo JJ. An investigation of inter-seasonal near-surface ground heat transfer and storage (Ph.D), Cardiff University; 2014:http://orca.cf.ac.uk/73226/.
    • [18] Cengel YA. Heat Transfer: A Practical Approach. 2nd ed. McGraw-Hill; 2003.
    • [19] Herb WR, Janke B, Mohseni O, Stefan HG. Ground surface temperature simulation for different land covers. J Hydrol. 2008;356(3-4): 327-343. http://dx.doi.org/10.1016/j.jhydrol.2008.04.020.
    • [20] Jansson C, Almkvist E, Jansson P. Heat balance of an asphalt surface: Observations and physically-based simulations. Meteorol Appl. 2006; 13(2):203-212. http://dx.doi.org/10.1017/S1350482706002179.
    • [21] North GR, Erukhimova TL. Atmospheric Thermodynamics: Elementary Physics and Chemistry. Cambridge University Press; 2009.
    • [22] Deardorff J. Efficient prediction of ground surface-temperature and moisture, with inclusion of a layer of vegetation. J Geophys ResOceans Atmos. 1978;83(NC4):1889-1903. http://dx.doi.org/10.1029/ JC083iC04p01889.
    • [23] Best MJ. A model to predict surface temperatures. Bound-Layer Meteorol. 1998;88(2):279-306. http://dx.doi.org/10.1023/A: 1001151927113.
    • [24] Cleall PJ, Muñoz-Criollo JJ, Rees SW. Assessment and representation of thermal surface fluxes in soils. In: Computer Methods Recent Advances Geomechanics. Kyoto, Japan: CRC Press; 2014:1321-1326, http://www.crcnetbase.com/doi/abs/10.1201/b17435-233.
    • [25] Cleall PJ, Muñoz-Criollo JJ, Rees SW. Analytical solutions for ground temperature profiles and stored energy using meteorological data. Transp Porous Media. 2014;106(1):181-199. http://dx.doi.org/10.1007/s11242-014-0395-3.
    • [26] Bangerth W, Hartmann R, Kanschat G. deal.II-a general-purpose object-oriented finite element library. ACM Trans Math Softw. 2007;33(4):http://dx.doi.org/10.1145/1268776.1268779. Article 24 (Preprint).
    • [27] UK Meteorological Office. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-Current). NCAS British Atmospheric Data Centre. [Online], 2012. Available at: http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmomidas [Accessed: 03-Apr-2014].
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok