LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Springer
Journal: Journal of Mathematical Biology
Languages: English
Types: Article
Subjects: Telomeres, 92B05, 37N25, 34K07, Article, G-quadruplex, Mathematical model, Telomerase, T-loop, RHPS4
Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdallah P, Luciano P, Runge KW, Lisby M, Geli V, Gilson E, Teixeira MT (2009) A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 11:988-993
    • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greidert CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114- 10118
    • Antal T, Blagoev KB, Trugman SA, Redner S (2007) Aging and immortality in a cell proliferation model. J Theor Biol 248:411-417
    • Arino O, Kimmel M, Webb GF (1995) Mathematical-modeling of the loss of telomere sequences. J Theor Biol 177:45-57
    • Arkus N (2005) A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss. J Theor Biol 235:13-32
    • Bilsland AE, Cairney CJ, Keith WN (2011) Targeting the telomere and shelterin complex for cancer therapy: current views and future perspectives. J Cell Mol Med 15:179-186
    • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661-673
    • Blagoev KB (2009) Cell proliferation in the presence of telomerase. PLoS One 4:e4622
    • Canela A, Vera E, Klatt P, Blasco MA (2007) High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci USA 104:5300-5305
    • Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319-330
    • Cheng MK, Modi C, Cookson JC, Hutchinson I, Heald RA, McCarroll AJ, Missailidis S, Tanious F, Wilson WD, Mergny JL, Laughton CA, Stevens MFG (2008) Antitumor polycyclic acridines. 20. Search for DNA quadruplex binding selectivity in a series of 8,13-dimethylquino 4,3,2-kl acridinium salts: Telomere-targeted agents. J Med Chem 51:963-975
    • Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850-1853
    • Collins MA (1981) A quasicontinuum approximation for solitons in an atomic chain. Chem Phys Lett 77:342-347
    • Cookson JC, Dai FP, Smith V, Heald RA, Laughton CA, Stevens MFG, Burger AM (2005) Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor 3,11-difluoro-6,8,13-trimethyl-8H-quino 4,3,2-kl acridinium methosulfate (RHPS4) in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents. Mol Pharmacol 68:1551-1558
    • Cristofari G, Lingner J (2006) Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 25:565-574
    • Dai XY, Huang CH, Bhusari A, Sampathi S, Schubert K, Chai WH (2010) Molecular steps of G-overhang generation at human telomeres and its function in chromosome end protection. EMBO J 29:2788-2801
    • de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323-329
    • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev 19:2100-2110
    • de Lange T (2009) How telomeres solve the end-protection problem. Science 326:948-952
    • Deng YB, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450-458
    • Dmitriev PV, Vassetzky YS (2009) Analysis of telomeric DNA: current approaches and methods. Russ J Dev Biol 40:125-144
    • Golubev A, Khrustalev S, Butov A (2003) An in silico investigation into the causes of telomere length heterogeneity and its implications for the Hayflick limit. J Theor Biol 225:153-170
    • Gowan SM, Heald R, Stevens MFG, Kelland LR (2001) Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol Pharmacol 60:981-988
    • Grasman J, Salomons HM, Verhulst S (2011) Stochastic modeling of length-dependent telomere shortening in corvus monedula. J Theor Biol 282:1-6
    • Greenberg RA (2005) Telomeres, crisis and cancer. Curr Mol Med 5:213-218
    • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503-514
    • Gunaratnam M, Greciano O, Martins C, Reszka AP, Schultes CM, Morjani H, Riou JF, Neidle S (2007) Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem Pharmacol 74:679-689
    • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614-636
    • Hayflick L (1979) Cell biology of aging. J Investig Dermatol 73:8-14
    • Heald RA, Modi C, Cookson JC, Hutchinson I, Laughton CA, Gowan SM, Kelland LR, Stevens MFG (2002) Antitumor polycyclic acridines. 8. Synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts. J Med Chem 45:590-597
    • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67-77
    • Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine guanine base pairs. Cell 51:899-908
    • Hirt BV (2012) Mathematical modelling of cell cycle and telomere dynamics. PhD thesis, University of Nottingham. http://etheses.nottingham.ac.uk
    • Hirt BV, Wattis JAD, Preston SP, Laughton CA (2012) The effects of a telomere destabilizing agent on cancer cell-cycle dynamics: integrated modelling and experiments. J Theor Biol 295:9-22
    • Itzkovitz S, Shlush LI, Gluck D, Skorecki K (2008) Population mixture model for nonlinear telomere dynamics. Phys Rev E 78(6):060902
    • Johnson LA, Byrne HM, Willis AE, Laughton CA (2011) An integrative biological approach to the analysis of tissue culture data: application to the antitumour agent RHPS4. Integr Biol 3:843-849
    • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011-2015
    • Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X, Harley CB, Aviv A (2010) Measurement of telomere length by the southern blot analysis of terminal restriction fragment lengths. Nat Protoc 5:1596-1607
    • Knig SLB, Evans AC, Huppert JL (2010) Seven essential questions on G-quadruplexes. BioMol Concepts 1:197-213
    • Kowald A (1997) Possible mechanisms for the regulation of telomere length. J Mol Biol 273:814-825
    • Lei M, Zaug AJ, Podell ER, Cech TR (2005) Switching human telomerase on and off with hPOT1 protein in vitro. J Biol Chem 280:20449-20456
    • Leonetti C, Amodei S, D'Angelo C, Rizzo A, Benassi B, Antonelli A, Elli R, Stevens MFG, D'Incalci M, Zupi G, Biroccio A (2004) Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13- trimethyl-8H-quino 4,3,2-kl acridinium methosulfate) is associated with telomere capping alteration. Mol Pharmacol 66:1138-1146
    • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951-960
    • Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19:414-422
    • Macville M, Schröck E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, Popescu N, Ried T (1999) Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 59:141-150
    • Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657-666
    • Martens UM, Chavez EA, Poon SSS, Schmoor C, Landsdorp PM (2000) Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 256:291-299
    • Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC (2003) Telomerase maintains telomere structure in normal human cells. Cell 114:241-253
    • Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) Bionumbers-the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750-D753
    • Monchaud D, Teulade-Fichou MP (2008) A hitchhiker's guide to G-quadruplex ligands. Org Biomol Chem 6:627-636
    • Monier K, Armas JCG, Etteldorf S, Ghazal P, Sullivan KF (2000) Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2:661-665
    • Neidle S (2010) Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277:1118-1125
    • Oganesian L, Karlseder J (2009) Telomeric armor: the layers of end protection. J Cell Sci 122:4013-4025
    • Olofsson P, Bertuch AA (2010) Modeling growth and telomere dynamics in saccharomyces cerevisiae. J Theor Biol 263:353-359
    • Olofsson P, Kimmel M (1999) Stochastic models of telomere shortening. Math Biosci 158:75-92
    • op den Buijs J, van den Bosch PPJ, Musters MWJM, van Riel NAW(2004) Mathematical modeling confirms the length-dependency of telomere shortening. Mech Ageing Dev 125:437-444
    • Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301-334
    • Poon SSS, Martens UM, Ward RK, Lansdorp PM (1999) Telomere length measurements using digital fluorescence microscopy. Cytometry 36:267-278
    • Proctor CJ, Kirkwood TBL (2002) Modelling telomere shortening and the role of oxidative stress. Mech Ageing Dev 123:351-363
    • Proctor CJ, Kirkwood TBL (2003) Modelling cellular senescence as a result of telomere state. Aging Cell 2:151-157
    • Qi Q (2011) Mathematical modelling of telomere dynamics. PhD thesis, University of Nottingham. http:// etheses.nottingham.ac.uk/2258
    • Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039-1042
    • Rodriguez-Brenes IA, Peskin CS (2010) Quantitative theory of telomere length regulation and cellular senescence. Proc Natl Acad Sci USA 107:5387-5392
    • Rosenau P (1986) Dynamics of nonlinear mass-spring chains near the continuum-limit. Phys Lett A 118:222-227
    • Rubelj I, Vondracek Z (1999) Stochastic mechanism of cellular aging-abrupt telomere shortening as a model for stochastic nature of cellular aging. J Theor Biol 197:425-438
    • Saldanha SN, Andrews LG, Tollefsbol TO (2003) Assessment of telomere length and factors that contribute to its stability. Eur J Biochem 270:389-403
    • Samassekou O, Gadji M, Drouin R, Yan J (2010) Sizing the ends. Normal length of human telomeres. Ann Anat 192:284-291
    • Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci USA 98:8572-8577
    • Sidorov IA, Hirsch KS, Harley CB, Dimitrov DS (2003) Cancer treatment by telomerase inhibitors: predictions by a kinetic model. Math Biosci 181:209-221
    • Sozou PD, Kirkwood TBL (2001) A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. J Theor Biol 213:573-586
    • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549-1556
    • Tang J, Zy Kan, Yao Y, Wang Q, Hao Yh, Tan Z (2008) G-quadruplex preferentially forms at the very 3' end of vertebrate telomeric DNA. Nucleic Acids Res 36:1200-1208
    • Tauchi T, Shin-ya K, Sashida G, Sumi M, Okabe S, Ohyashiki JH, Ohyashiki K (2006) Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25:5719-5725
    • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117:323-335
    • von Zglinicki T, Martin-Ruiz CM, Saretzki G (2005) Telomeres, cell senescence and human ageing. Signal Transduct 3:103-114
    • Wallweber G, Gryaznov S, Pongracz K, Pruzan R (2003) Interaction of human telomerase with its primer substrate. Biochemistry 42:589-600
    • Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR, Lei M (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506-510
    • Wattis JAD (1996) Approximations to solitary waves on lattices. 3. The monatomic lattice with secondneighbour interactions. J Phys A: Math Gen 29:8139-8157
    • Wolkenhauer O, Fell D, De Meyts P, Bluthgen N, Herzel H, Le Novere N, Hofer T, Schurrle K, van Leeuwen I (2009) Sysbiomed report: Advancing systems biology for medical applications. IET Syst Biol 3:131-136
    • Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173-179
    • Wu P, de Lange T (2009) Human telomerase caught in the act. Cell 138:432-434
    • Xu Y (2011) Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. Chem Soc Rev 40:2719-2740
    • Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350:718-720
    • Zaug AJ, Podell ER, Cech TR (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci USA 102:10864-10869
    • Zhao Y, Kan ZY, Zeng ZX, Hao YH, Chen H, Tan Z (2004) Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex. J Am Chem Soc 126:13255-13264
    • Zhao Y, Sfeir AJ, Zou Y, Buseman CM, Chow TT, Shay JW, Wright WE (2009) Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell 138:463-475
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article