Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haschke, Michael; Sobel, E. R.; Blisniuk, P. M.; Strecker, M. R.; Warkus, F. (2006)
Publisher: American Geophysical Union
Languages: English
Types: Article
[1] Apatite fission track ages from a ∼2000 m elevation transect from the Patagonian fold and thrust belt (47.5°S) allow us to quantify the denudational and orographic response of the upper plate to active ridge subduction. Accelerated cooling started at 17 Ma, predating the onset of ridge collision (14–10 Ma), and was followed by reheating between 10 and 6 Ma. Thermal modeling favors reheating on the order of 60°C at ∼28°C/Ma due to east-migration of a slab window after the ridge-trench collision. Final rapid cooling since 4 Ma of ∼18°C/Ma (geothermal gradient of 14°C/km) correlates with the presence of an orographic barrier and >1 km rock uplift in this region between 17.1 and 6.3 Ma. Increased precipitation and erosion since 4 Ma caused asymmetric exhumation, with 3–4 km on the leeside. Repeated crustal unroofing in response to active ridge subduction can explain the positive gravity anomaly south of the Chile Triple Junction.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allmendinger, R. W., T. E. Jordan, S. M. Kay, and B. L. Isacks (1997), The evolution of the Altiplano-Puna plateau of the central Andes, Annu. Rev. Earth Planet. Sci., 25, 139 - 174.
    • Blisniuk, P. M., L. A. Stern, C. P. Chamberlain, P. K. Zeitler, V. A. Ramos, E. R. Sobel, M. Haschke, M. R. Strecker, and F. Warkus (2006), Links between mountain uplift, climate, and surface processes in the southern Patagonian Andes, in The Andes - Active Subduction Orogeny: Frontiers in Earth Sciences, edited by O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Go¨tze, V. Ramos, M. Strecker, and P. Wigger, Springer Verlag, in press.
    • Bourgois, J., H. Martin, Y. Lagabrielle, J. Le Moigne, and J. Frutos Jara (1996), Subduction erosion related to spreading ridge subduction: Taitao Peninsula (Chile margin triple junction area), Geology, 24, 723 - 726.
    • Donelick, R. A., R. A. Ketcham, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects, Am. Mineral., 84, 1224 - 1234.
    • Flint, S. S., D. J. Prior, S. M. Agar, and P. Turner (1994), Stratigraphic and structural evolution of the Tertiary Cosmelli basin and its relationship to the Chile triple junction, J. Geol. Soc., 151, 251 - 268.
    • Folguera, A., and V. A. Ramos (2002), Particion de la deformacion durante el Neogeno en los Andes Patagonicos Septentrionales (37 - 46 S), Rev. Soc. Geol. Esp., 15, 81 - 93.
    • Gleadow, A. J., D. X. Belton, B. P. Kohn, and R. W. Brown (2002), Fission track dating of phosphate minerals and the thermochronology of apatite, in Phosphates: Geochemical, Geobiological, and Materials Importance, Rev. Mineral. Geochem., vol. 48, edited by M. J. Kohn, J. Rakovan, and J. M. Hughes, pp. 579 - 630, Mineral. Soc. of Am., Washington, D. C.
    • Gorring, M. L., S. M. Kay, P. K. Zeitler, V. A. Ramos, D. Rubilio, M. I. Fernandez, and J. L. Panza (1997), Neogene Patagonian plateau lavas: Continental magmas associated with ridge collision at the Chile Triple Junction, Tectonics, 16, 1 - 17.
    • Green, P. F., I. R. Duddy, G. M. Laslett, K. A. Hegarty, A. J. Gleadow, and J. F. Lovering (1989), Thermal annealing of fission tracks in apatite, 4. Quantitative modelling techniques and extension to geological timescales, Chem. Geol., 79, 155 - 182.
    • Ketcham, R. A., R. A. Donelick, and W. D. Carlson (1999), Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales, Am. Mineral., 84, 1235 - 1255.
    • Ketcham, R. A., R. A. Donelick, and M. B. Donelick (2000), AFTSolve: A program for multikinetic modeling of apatite fission-track data, Geol. Mater. Res., 2, 1 - 32.
    • Murdie, R. E., P. Styles, D. J. Prior, and A. J. Daniel (2000), A new gravity map of southern Chile and its preliminary interpretation, Rev. Geol. Chile, 27(1), 49 - 63.
    • Pankhurst, R. J., S. D. Weaver, F. Herve´, and P. Larrando (1999), MesozoicCenozoic evolution of the North Patagonian Batholith in Ayse´n, southern Chile, J. Geol. Soc. London, 156, 673 - 694.
    • Pope, D. C., and S. D. Willet (1998), Thermal mechanical model for crustal thickening in the central Andes driven by ablative subduction, Geology, 26, 511 - 514.
    • Ramos, V. A. (1989), Andean foothills structures in northern Magallanes Basin, Argentina, AAPG Bull., 73, 887 - 903.
    • Ramos, V. A. (2005), Seismic ridge subduction and topography: Foreland deformation in the Patagonian Andes, Tectonophysics, 399, 73 - 86.
    • Ramos, V. A., and S. M. Kay (1992), Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions, Tectonophysics, 205, 261 - 282.
    • Russo, R. M., and P. G. Silver (1996), Cordillera formation, mantle dynamics and the Wilson cycle, Geology, 24, 511 - 514.
    • Skarmeta, J., and J. C. Castelli (1997), Intrusion sintectonica del granito de Las Torres del Paine, Andes Patagonicos de Chile, Rev. Geol. Chile, 24, 55 - 74.
    • Sobel, E. R., and M. R. Strecker (2003), Uplift, exhumation, and precipitation: Tectonic and climatic control of late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina, Basin Res., 15, doi:10.1046/j.1365-2117.2003.00214.x, p. 431 - 451.
    • Sua´rez, M., and R. De la Cruz (2001), Jurassic to Miocene K-Ar dates from eastern central Patagonian Cordillera plutons, Chile (45 - 48 S), Geol. Mag., 138, 53 - 66.
    • Sua´rez, M., R. De La Cruz, and C. M. Bell (2000), Timing and origin of deformation along the Patagonian fold and thrust belt, Geol. Mag., 137, 345 - 353.
    • Thomson, S. N., F. Herve´, and B. Sto¨ ckhert (2001), Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes, Tectonics, 20, 693 - 711.
    • Warkus, F. (2002), Die neogene Hebungsgeschichte der Patagonischen Anden im Kontext der Subduktion eines aktiven Spreizungszentrums, doctoral thesis, 99 pp., Univ. of Potsdam, Potsdam, Germany.
    • Wdowinski, S., and Y. Bock (1994), The evolution of deformation and tomography of high elevated plateaus: 2. Application to the central Andes, J. Geophys. Res., 99, 7121 - 7130.
    • Welkner, D., and M. Sua´rez (1999), Los plutones del a´rea del Cerro San Lorenzo (47 30 S): Valores K - Ar y Ar - Ar, Actas Congr. Geol. Argent., XIV, 112 - 113.
    • P. Blisniuk, E. R. Sobel, M. R. Strecker, and F. Warkus, Institut fu¨ r Geowissenschaften, Universita¨t Potsdam, D-14469 Potsdam, Germany. M. Haschke, Department of Earth, Ocean and Planetary Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK. ()
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article