Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sanderud, Audun; England, Andrew; Hogg, Peter; Fosså, Kristian; Svensson, Siri Fløgstad; Johansen, Safora (2015)
Publisher: WB Saunders
Languages: English
Types: Article
Subjects: Computed tomography, CTDIvol, Radiotherapy planning, Thorax, Absorbed dose, :Medisinske Fag: 700::Klinisk medisinske fag: 750::Radiologi og bildediagnostikk: 763 [VDP], DLP, health_and_wellbeing
Purpose To compare the absorbed dose from computed tomography (CT) in radiotherapy planning (RP-CT) against those from diagnostic CT (DG-CT) examinations and to explore the possible reasons for any dose differences. Method Two groups of patients underwent CT-scans of the thorax with either DG-CT (n = 55) or RP-CT (n = 55). Patients from each group had similar weight and body mass index (BMI) and were divided into low (<25) and high BMI (>25). Parameters including CTDIvol, DLP and scan-length were compared. Results The mean CTDIvol and DLP values from RP-CT (38.1 mGy, 1472 mGy cm) are approximately four times higher than for DG-CT (9.63 mGy, 376.5 mGy cm). For low BMI group, the CTDIvol in the RP-CT scans (36.4 mGy) is 6.3 times higher than the one in the DG-CT scans (5.8 mGy). For the high BMI group, the CTDIvol in the RP-CT (39.6 mGy) is 2.5 times higher than the one in the DG-CT scans (15.8 mGy). In the DG-CT scans a strong negative linear correlation between noise index (NI) and mean CTDIvol was observed (r = −0.954, p = 0.004); the higher NI, the lower CTDIvol. This was not the case in the RP-CT scans. Conclusion The absorbed radiation dose is significantly higher and less BMI dependent for RP-CT scans compared to DG-CT. Image quality requirements of the examinations should be researched to ensure that radiation doses are not unnecessarily high. acceptedVersion
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Almén A, Friberg EG, Widmark A, Olerud HM. Radiology in Norway anno 2008. Trends in examination frequency and collective effective dose to the population. StrålevernRapport. 2010:37. http://www.nrpa.no/dav/dc3ba89a7a.pdf
    • 2. Trattner S, Pearson GD, Chin C, Cody DD, Gupta R, Hess CP, et al. Standardization and optimization of CT protocols to achieve low dose. Journal of the American College of Radiology : JACR. 2014;11(3):271-278. doi: http://dx.doi.org/10.1016/j.jacr.2013.10.016
    • 3. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed ed. Philadelphia: Lippincott Williams & Wilkins; 2006.
    • 4. Mackie TR, Liu HH, McCullough EC. Treatment planning algorithms: model-based photon dose calculations. In: Khan FM, ed. Treatment planning in radiation oncology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. http://www.loc.gov/catdir/toc/ecip0617/2006024135.html
    • 5. Prado K, Starkschall G, Mohan R. Three-Dimensional Conformal Radiation Therapy (3DCRT). In: Khan FM, ed. Treatment planning in radiation oncology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2007. http://www.loc.gov/catdir/toc/ecip0617/2006024135.html
    • 6. Bayman E, Prestwich RJ, Speight R, Aspin L, Garratt L, Wilson S, et al. Patterns of failure after intensity-modulated radiotherapy in head and neck squamous cell carcinoma using compartmental clinical target volume delineation. Clinical oncology. 2014;26(10):636-642. doi: http://dx.doi.org/10.1016/j.clon.2014.05.001
    • 7. Yu L, Liu X, Leng S, Kofler JM, Ramirez-Giraldo JC, Qu M, et al. Radiation dose reduction in computed tomography: techniques and future perspective. Imaging in medicine. 2009;1(1):65-84. doi: http://dx.doi.org/10.2217/iim.09.5
    • 8. WHO. Obesity and overweight. Fact sheet N°311. 2011. http://www.who.int/mediacentre/factsheets/fs311/en
    • 9. Dancey CP, Reidy J. Statistics Without Maths for Psychology: Using SPSS for Windows. Prentice Hall; 2004. https://books.google.no/books?id=F249P9eMpP4C
    • 10. Widmark A, Friberg EG, Olerud HM, Silkoset RD, Solberg M, Wikan K, et al. Guidance for use of medical X-ray and MR equipment. Guidance to «Regulations for radiation protection and use of radiation». Guidance No 5. 2014. http://www.nrpa.no/dav/2e5ac2ed79.pdf
    • 11. Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Medical Physics. 2011;38(3):1261-1265. doi: http://dx.doi.org/10.1118/1.3544350
    • 12. Valentin J. Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Annals of the ICRP. 2007;37(1):1-79, iii. doi: http://dx.doi.org/10.1016/j.icrp.2007.08.003
    • 13. Deak PD, Langner O, Lell M, Kalender WA. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology. 2009;252(1):140-147. doi: http://dx.doi.org/10.1148/radiol.2522081845
    • 14. Goo HW. CT radiation dose optimization and estimation: an update for radiologists. Korean Journal of Radiology. 2012;13(1):1-11. doi: http://dx.doi.org/10.3348/kjr.2012.13.1.1
    • 15. Miéville FA, Gudinchet F, Rizzo E, Ou P, Brunelle F, Bochud FO, et al. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality-preliminary findings. Pediatric radiology. 2011;41(9):1154- 1164. doi: http://dx.doi.org/10.1007/s00247-011-2146-8
    • 16. Winklehner A, Karlo C, Puippe G, Schmidt B, Flohr T, Goetti R, et al. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. European radiology. 2011;21(12):2521-2526. doi: http://dx.doi.org/10.3348/kjr.2012.13.1.1
    • 17. Odedra D, Blobel J, Alhumayyd S, Durand M, Jimenez-Juan L, Paul N. Image noise-based dose adaptation in dynamic volume CT of the heart: dose and image quality optimisation in comparison with BMI-based dose adaptation. Eur Radiol. 2014;24(1):86-94. doi: http://dx.doi.org/10.1007/s00330-013-2980-1
    • 18. McCollough CH. Standardization Versus Individualization: How Each Contributes to Managing Dose in Computed Tomography. Health physics. 2013;105(5):445-453. doi: http://dx.doi.org/10.1097/HP.0b013e31829db936
    • 19. Larson DB. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method. Pediatric Radiology. 2014;44(3 Supp):s501-s505. doi: http://dx.doi.org/10.1007/s00247-014-3077-y
    • 20. Menke J. Comparison of Different Body Size Parameters for Individual Dose Adaptation in Body CT of Adults 1. Radiology. 2005;236(2):565-571. doi: http://dx.doi.org/10.1148/radiol.2362041327
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.