LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: IOP
Languages: English
Types: Article
Subjects: QC, Mathematical Physics, High Energy Physics - Theory, Quantum Physics
We provide a systematic procedure to relate a three-dimensional q-deformed oscillator algebra to the corresponding algebra satisfied by canonical variables describing non-commutative spaces. The large number of possible free parameters in these calculations is reduced to a manageable amount by imposing various different versions of -symmetry on the underlying spaces, which are dictated by the specific physical problem under consideration. The representations for the corresponding operators are in general non-Hermitian with regard to standard inner products and obey algebras whose uncertainty relations lead to minimal length, areas or volumes in phase space. We analyze in particular one three-dimensional solution which may be decomposed into a two-dimensional non-commutative space plus one commuting space component, and also into a one-dimensional non-commutative space plus two commuting space components. We study some explicit models on these types of non-commutative spaces.

Share - Bookmark

Cite this article