Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Campbell, Anne Eileen
Languages: English
Types: Doctoral thesis
Subjects: BF
This thesis set out to investigate whether individual differences in concentrations of the \ud neurotransmitter γ-aminobutyric acid (GABA) could predict the extent of alcohol induced \ud impairment to measures of behavioural inhibition. However, investigations in to the reliability \ud of magnetic resonance spectroscopy (MRS) methods to measure GABA, and of the stop signal \ud reaction time (SSRT) demonstrated that neither measure was sufficiently reliable to be used in \ud correlational research. Instead, this thesis first investigated the effects of alcohol on neuronal \ud oscillations measured by magnetoencephalography (MEG) in the gamma frequency band that \ud are associated with GABA. In response to a visual stimulus alcohol was found to increase \ud gamma power and decrease gamma frequency in the visual cortex. In response to a motor \ud stimulus increases in gamma power were also observed over the motor cortex whilst \ud intoxicated. During resting state recordings alcohol was found to increase power in central, \ud parietal and occipital areas across a number of frequency bands and also to alter activity across \ud functional resting state networks including the fronto-parietal, visual and motor networks. \ud Secondly, alcohol was found to impair behavioural inhibition in line with previous literature. \ud However, this effect was smaller than expected and did not extend from the manual response \ud domain to saccadic responses. It was also found that the stop signal task was not exclusively \ud measuring behavioural inhibition where alcohol also affected action-updating abilities. In the \ud saccadic version of the stop signal task it was found that a saccadic inhibition effect was also \ud present indicating top-down behavioural inhibition is aided by bottom-up automatic inhibition. \ud Altogether this body of work provides a basis for future research wishing to investigate the \ud relationship between acute effects of alcohol on GABAergic functioning and impulsivity in \ud order to better inform intervention and prevention treatments.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Data Analysis .................................................................................................... 105
    • DINASAUR model simulations........................................................................ 106
    • 6 Chapter 6: A General Discussion of the Reliability of the Stop Signal Task and Magnetic
    • Resonance Spectroscopy of GABA in the Frontal Cortex........................................................ 119
    • Reliability of the stop signal reaction time (SSRT) .................................................. 121
    • Chapter 7: General Discussion and Conclusions .............................................................. 129
    • Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and Inhibitory Control. Psychological Science, 8(1), 60-64. doi:10.1111/j.1467-9280.1997.tb00545.x
    • Lovinger, D. M., White, G., & Weight, F. F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science (New York, N.Y.), 243(4899), 1721-4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2467382
    • Lovinger, D. M., White, G., & Weight, F. F. (1990). NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 10(4), 1372-1379. doi:10.1093/ejo/cjr055
    • Lukas, S. E., Mendelson, J. H., Benedikt, R. A., & Jones, B. (1985). EEG, Physiologic and Behavioral Effects of Ethanol Administration. In L. S. Harris (Ed.), Proceedings of the 47th Annual Scientific Meeting, The Committee on Problems of Drug Dependence, Inc. (pp. 209-214). National Institute on Drug Abuse.
    • Luksch, A., Resch, H., Weigert, G., Sacu, S., Schmetterer, L., & Garhöfer, G. (2009). Acute effects of intravenously administered ethanol on retinal vessel diameters and flicker induced vasodilatation in healthy volunteers. Microvascular Research, 78(2), 224-9. doi:10.1016/j.mvr.2009.06.001
    • Lytle, D. A., Egilmez, Y., Rocha, B. A., & Emmet-Oglesby, M. W. (1994). Discrimination of ethanol and of diazepam: Differential cross-tolerance. Behavioural Pharmacology, 5, 451-460.
    • Maizey, L., Allen, C. P. G., Evans, C. J., Verbruggen, F., & Chambers, C. D. (2015). The neurophysiology and neurochemistry of action updating in human prefrontal cortex: A combined TMS/MRS/fMRI study. Open Science Framework. Retrieved from https://osf.io/4fj73/
    • Maizey, L., Verbruggen, F., Chambers, C. D., Allen, C. P. G., & Evans, C. J. (2013). Neurocognitive mechanisms of inhibitory and non-inhibitory action updating: An fMRI study. Open Science Framework. Retrieved from https://osf.io/zbk3p/
    • Marczinski, C. A., Abroms, B. D., Van Selst, M., & Fillmore, M. T. (2005). Alcohol-induced impairment of behavioral control: differential effects on engaging vs. disengaging responses. Psychopharmacology, 182(3), 452-9. doi:10.1007/s00213-005-0116-2
    • Marczinski, C. A., & Fillmore, M. T. (2003). Preresponse cues reduce the impairing effects of alcohol on the execution and suppression of responses. Experimental and Clinical Psychopharmacology, 11(1), 110-117. doi:10.1037/1064-1297.11.1.110
    • Marczinski, C. A., & Fillmore, M. T. (2006). Clubgoers and their trendy cocktails: implications of mixing caffeine into alcohol on information processing and subjective reports of intoxication. Experimental and Clinical Psychopharmacology, 14(4), 450-458. doi:10.1037/1064-1297.14.4.450
    • Marczinski, C. A., Fillmore, M. T., Henges, A. L., Ramsey, M. A., & Young, C. R. (2012). Effects of energy drinks mixed with alcohol on information processing, motor coordination and subjective reports of intoxication. Experimental and Clinical Psychopharmacology, 20(2), 129-138. doi:10.1037/a0026136
    • Marinkovic, K., Rickenbacher, E., Azma, S., Artsy, E., & Lee, A. K. C. (2013). Effects of acute
    • Marinkovic, K., Rosen, B. Q., Cox, B., & Kovacevic, S. (2012). Event-Related Theta Power during Lexical-Semantic Retrieval and Decision Conflict is Modulated by Alcohol Intoxication: Anatomically Constrained MEG. Frontiers in Psychology, 3(April), 121. doi:10.3389/fpsyg.2012.00121
    • Martin, C. S., Earleywine, M., Musty, R. E., Perrine, M. W., & Swift, R. M. (1993). Development and validation of the Biphasic Alcohol Effects Scale. Alcoholism, Clinical and Experimental Research, 17(1), 140-146.
    • McBride, J., Boy, F., Husain, M., & Sumner, P. (2012). Automatic motor activation in the executive control of action. Frontiers in Human Neuroscience, 6(April), 82. doi:10.3389/fnhum.2012.00082
    • McCarthy, D. M., Niculete, M. E., Treloar, H. R., Morris, D. H., & Bartholow, B. D. (2012). Acute alcohol effects on impulsivity: associations with drinking and driving behavior. Addiction (Abingdon, England), 107(12), 2109-14. doi:10.1111/j.1360-0443.2012.03974.x
    • McKay, P. F., Foster, K. L., Mason, D., Cummings, R., Garcia, M., Williams, L. S., … June, H. L. (2004). A high affinity ligand for GABAA-receptor containing alpha5 subunit antagonizes ethanol's neurobehavioral effects in Long-Evans rats. Psychopharmacology, 172(4), 455- 62. doi:10.1007/s00213-003-1671-z
    • Mescher, M., Merkle, H., Kirsch, J., Garwood, M., & Gruetter, R. (1998). Simultaneous in vivo spectral editing and water suppression. NMR in Biomedicine, 11, 266-272. doi:10.1002/nbm.744
    • Miczek, K. A., DeBold, J. F., & van Erp, A. M. (1994). Neuropharmacological characteristics of individual differences in alcohol effects on aggression in rodents and primates. Behavioural Pharmacology, 5, 407-421.
    • Mikkelsen, M., Singh, K. D., Sumner, P., & Evans, C. J. (2015). Comparison of the repeatability of GABA-edited magnetic resonance spectroscopy with and without macromolecule suppression. Magnetic Resonance in Medicine, 75(3), 946-953. doi:10.1002/mrm.25699
    • Miller, M. a., Weafer, J., & Fillmore, M. T. (2009). Gender Differences in Alcohol Impairment of Simulated Driving Performance and Driving-Related Skills. Alcohol and Alcoholism, 44(6), 586-593. doi:10.1093/alcalc/agp051
    • Mitchell, J. M., Fields, H. L., D'Esposito, M., & Boettiger, C. A. (2005). Impulsive Responding in Alcoholics. Alcoholism: Clinical and Experimental Research, 29(12), 2158-2169. doi:10.1097/01.alc.0000191755.63639.4a
    • Mon, A., Durazzo, T. C., & Meyerhoff, D. J. (2012). Glutamate, GABA, and other cortical metabolite concentrations during early abstinence from alcohol and their associations with neurocognitive changes. Drug and Alcohol Dependence, 125(1-2), 27-36. doi:10.1016/j.drugalcdep.2012.03.012.Glutamate
    • Morein-Zamir, S., & Kingstone, A. (2006). Fixation offset and stop signal intensity effects on saccadic countermanding: a crossmodal investigation. Experimental Brain Research, 175(3), 453-62. doi:10.1007/s00221-006-0564-x
    • Mulvihill, L. E., Skilling, T. A., & Vogel-Sprott, M. (1997). Alcohol and the ability to inhibit behavior in men and women. Journal of Studies on Alcohol, 58(6), 600-5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9391919
    • Munoz, D. P., & Wurtz, R. H. (1993a). Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. Journal of Neurophysiology, 70(2), 559-575.
    • Munoz, D. P., & Wurtz, R. H. (1993b). Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology, 70(2), 576-589.
    • Muthukumaraswamy, S. D. (2010). Functional Properties of Human Primary Motor Cortex Gamma Oscillations. Journal of Neurophysiology. doi:10.1152/jn.00607.2010
    • Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Frontiers in Human Neuroscience, 7(April), 138. doi:10.3389/fnhum.2013.00138
    • Muthukumaraswamy, S. D. (2014). The use of magnetoencephalography in the study of psychopharmacology (pharmaco-MEG). Journal of Psychopharmacology (Oxford, England), (June). doi:10.1177/0269881114536790
    • Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … Nutt, D. J. (2013). Broadband cortical desynchronization underlies the human psychedelic state. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(38), 15171-83. doi:10.1523/JNEUROSCI.2063-13.2013
    • Muthukumaraswamy, S. D., Edden, R. A. E., Jones, D. K., Swettenham, J. B., & Singh, K. D. (2009). Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8356-61. doi:10.1073/pnas.0900728106
    • Muthukumaraswamy, S. D., Myers, J. F. M., Wilson, S. J., Nutt, D. J., Hamandi, K., LingfordHughes, A., & Singh, K. D. (2013). Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 1, 1-8. doi:10.1038/npp.2013.9
    • Muthukumaraswamy, S. D., Myers, J. F. M., Wilson, S. J., Nutt, D. J., Lingford-Hughes, A., Singh, K. D., & Hamandi, K. (2013). The effects of elevated endogenous GABA levels on movement-related network oscillations. NeuroImage, 66, 36-41. doi:10.1016/j.neuroimage.2012.10.054
    • Muthukumaraswamy, S. D., & Singh, K. D. (2013). Visual gamma oscillations : The effects of stimulus type , visual field coverage and stimulus motion on MEG and EEG recordings. NeuroImage, 69, 223-230. doi:10.1016/j.neuroimage.2012.12.038
    • Muthukumaraswamy, S. D., Singh, K. D., Swettenham, J. B., & Jones, D. K. (2010). Visual gamma oscillations and evoked responses: variability, repeatability and structural MRI correlates. NeuroImage, 49(4), 3349-57. doi:10.1016/j.neuroimage.2009.11.045
    • Myers, J. F. M., Evans, C. J., Kalk, N. J., Edden, R. A. E., & Lingford-Hughes, A. R. (2014). Measurement of GABA using J-difference edited 1H-MRS following modulation of synaptic GABA concentration with tiagabine. Synapse, 68(8), 355-362. doi:10.1002/syn.21747
    • Nachev, P., Wydell, H., O'Neill, K., Husain, M., & Kennard, C. (2007). The role of the presupplementary motor area in the control of action. NeuroImage, 36(3), T155-T163. doi:10.1016/j.neuroimage.2007.03.034
    • Nikolaou, K., Critchley, H., & Duka, T. (2013). Alcohol affects neuronal substrates of response inhibition but not of perceptual processing of stimuli signalling a stop response. PloS One, 8(9), e76649. doi:10.1371/journal.pone.0076649
    • Nikulin, V. V, Nikulina, A. V, Yamashita, H., Rossi, E. M., & Kähkönen, S. (2005). Effects of alcohol on spontaneous neuronal oscillations: a combined magnetoencephalography and electroencephalography study. Progress in neuro-psychopharmacology & biological psychiatry (Vol. 29). doi:10.1016/j.pnpbp.2005.04.014
    • Nishikawa, K., & Harrison, N. L. (2003). The Actions of Sevoflurane and Desflurane on the ␥ - Aminobutyric Acid Receptor Type A. Anesthesiology, 99(3), 678-684.
    • Nouraei, S. A. R. (2003). Dose-related effect of sevoflurane sedation on higher control of eye movements and decision making. British Journal of Anaesthesia, 91(2), 175-183. doi:10.1093/bja/aeg158
    • Nunnally, J. C. (1970). Intorduction to Psychological Measurement. New York: McGraw-Hill.
    • Nutt, D. J., Besson, M., Wilson, S. J., Dawson, G. R., & Lingford-Hughes, A. R. (2007). Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology, 53(7), 810-20. doi:10.1016/j.neuropharm.2007.08.008
    • Nutt, D., Wilson, S., Lingford-Hughes, A., Myers, J., Papadopoulos, A., & Muthukumaraswamy, S. (2015). Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers. Neuropharmacology, 88, 155-63. doi:10.1016/j.neuropharm.2014.08.017
    • O'Gorman, R. L., Michels, L., Edden, R. A., Murdoch, J. B., & Martin, E. (2011). In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. Journal of Magnetic Resonance Imaging, 33(5), 1262-1267. doi:10.1002/jmri.22520
    • Oke, O. O., Magony, A., Anver, H., Ward, P. D., Jiruska, P., Jefferys, J. G. R., & Vreugdenhil, M. (2010). High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro. The European Journal of Neuroscience, 31(8), 1435-45. doi:10.1111/j.1460-9568.2010.07171.x
    • Onton, J., & Makeig, S. (2006). Information-based modeling of event-related brain dynamics. Progress in Brain Research, 159, 99-120. doi:10.1016/S0079-6123(06)59007-7
    • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 1-9. doi:10.1155/2011/156869
    • Orser, B. A., Wang, L. Y., Pennefather, P. S., & MacDonald, J. F. (1994). Propofol Modulates Activation and Desensitization of Gaba(A) Receptors in Cultured Murine HippocampalNeurons. Journal of Neuroscience, 14(12), 7747-7760. Retrieved from ISI:A1994PY00600046
    • Ortner, C. N. M., MacDonald, T. K., & Olmstead, M. C. (2003). Alcohol intoxication reduces impulsivity in the delay-discounting paradigm. Alcohol and Alcoholism, 38(2), 151-156. doi:10.1093/alcalc/agg041
    • Pare, M., Hanes, D. P., Paré, M., & Hanes, D. P. (2003). Controlled Movement Processing: Superior Colliculus Activity Associated with Countermanded Saccades. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(16), 6480-9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12878689
    • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220-244. doi:10.1037//0033-2909.116.2.220
    • Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51(6), 768-774. doi:10.1002/1097- 4679(199511)51:6<768
    • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437-442. doi:10.1163/156856897X00366
    • Peterson, J. B., Rothfleisch, J., Zelazo, P. D., & Pihl, R. O. (1990). Acute alcohol intoxication and cognitive functioning. Journal of Studies on Alcohol, 51(2), 114-22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2308348
    • Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 110(11), 1842-57. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10576479
    • Pihl, R. O., Assaad, J. M., & Hoaken, P. N. S. (2003). The alcohol-aggression relationship and differential sensitivity to alcohol. Aggressive Behavior, 29(4), 302-315. doi:10.1002/ab.10072
    • Pohorecky, L. A. (1977). Biphasic action of ethanol. Biobehavioral Reviews, 1(4), 231-240. doi:10.1016/0147-7552(77)90025-0
    • Pollock, V. E., Schneider, L. S., Pawluczyk, S., Zemansky, M. F., & Gleason, R. P. (1992). Topographic Alcoholics Quantitative EEG Amplitude in Recovered, 25-32.
    • Porjesz, B., Almasy, L., Edenberg, H. J., Wang, K., Chorlian, D. B., Foroud, T., … Begleiter, H. (2002). Linkage disequilibrium between the beta frequency of the human EEG and a GABA A receptor gene locus, 99(6), 3729-3733.
    • Porjesz, B., Rangaswamy, M., Kamarajan, C., Jones, K. a, Padmanabhapillai, A., & Begleiter, H. (2005). The utility of neurophysiological markers in the study of alcoholism. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 116(5), 993-1018. doi:10.1016/j.clinph.2004.12.016
    • Propping, P., Krüger, J., & Mark, N. (1981). Genetic disposition to alcoholism. An EEG study in alcoholics and their relatives. Human Genetics, 59(1), 51-9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10819022
    • Puts, N., & Edden, R. (2012). In vivo magnetic spectroscopy of GABA: a methodological review. Prog Nucl Magn Spectrosc., 60, 1-26. doi:10.1016/j.pnmrs.2011.06.001.In
    • Ramaekers, J. G., & Kuypers, K. P. C. (2006). Acute effects of 3,4- methylenedioxymethamphetamine (MDMA) on behavioral measures of impulsivity: alone and in combination with alcohol. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 31(5), 1048-55. doi:10.1038/sj.npp.1300894
    • Rangaswamy, M., & Porjesz, B. (2014). Understanding alcohol use disorders with
    • neuroelectrophysiology. Handbook of Clinical Neurology (1st ed., Vol. 125). Elsevier B.V.
    • doi:10.1016/B978-0-444-62619-6.00023-9
    • Rangaswamy, M., Porjesz, B., Chorlian, D. B., Choi, K., Jones, K. A., Wang, K., … Begleiter, H. (2003). Theta power in the EEG of alcoholics. Alcoholism, Clinical and Experimental Research, 27(4), 607-15. doi:10.1097/01.ALC.0000060523.95470.8F
    • Rangaswamy, M., Porjesz, B., Chorlian, D. B., Wang, K., Jones, K. A., Kuperman, S., … Begleiter, H. (2004). Resting EEG in offspring of male alcoholics: beta frequencies. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 51(3), 239-51. doi:10.1016/j.ijpsycho.2003.09.003
    • Reingold, E. M., & Stampe, D. M. (2002). Saccadic inhibition in voluntary and reflexive saccades. Journal of Cognitive Neuroscience, 14(3), 371-88. doi:10.1162/089892902317361903
    • Reingold, E. M., & Stampe, D. M. (2004). Saccadic inhibition in reading. Journal of Experimental Psychology. Human Perception and Performance, 30(1), 194-211. doi:10.1037/0096- 1523.30.1.194
    • Reynolds, B., Ortengren, A., Richards, J. B., & de Wit, H. (2006). Dimensions of impulsive behavior: Personality and behavioral measures. Personality and Individual Differences, 40(2), 305-315. doi:10.1016/j.paid.2005.03.024
    • Reynolds, B., Richards, J. B., & Wit, H. De. (2006). Acute-alcohol effects on the Experiential Discounting Task ( EDT ) and a question-based measure of delay discounting. Pharmacology, Biochemistry, and Behavior, 83, 194-202. doi:10.1016/j.pbb.2006.01.007
    • Richards, J. B., Zhang, L., Mitchell, S. H., & de Wit, H. (1999). Delay or probability discounting in a model of impulsive behavior: effect of alcohol. Journal of the Experimental Analysis of Behavior, 71(2), 121-43. doi:10.1901/jeab.1999.71-121
    • Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16(1), 81-91. doi:10.1016/j.tics.2011.11.009
    • Roberto, M., Madamba, S. G., Moore, S. D., Tallent, M. K., & Siggins, G. R. (2003). Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 2053-8. doi:10.1073/pnas.0437926100
    • Roberts, W., Fillmore, M. T., & Milich, R. (2011). Linking impulsivity and inhibitory control using manual and oculomotor response inhibition tasks. Acta Psychologica, 138(3), 419-28. doi:10.1016/j.actpsy.2011.09.002
    • Robinson, S. E., & Vrba, J. (1999). Functional neuroimaging by synthetic aperture magnetometry (SAM). In T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe, & N. Nakasato (Eds.), Recent advances in biomagnetism (pp. 302-305). Sendai: Tohoku University Press.
    • Rose, A. K., & Duka, T. (2007). The influence of alcohol on basic motoric and cognitive disinhibition. Alcohol and Alcoholism (Oxford, Oxfordshire), 42(6), 544-51. doi:10.1093/alcalc/agm073
    • Rose, A. K., & Duka, T. (2008). Effects of alcohol on inhibitory processes. Behavioural Pharmacology, 19(4), 284-91. doi:10.1097/FBP.0b013e328308f1b2
    • Rosen, B. Q., O'Hara, R., Kovacevic, S., Schulman, A., Padovan, N., & Marinkovic, K. (2014).
    • Rouder, J. N., & Morey, R. D. (2012). Default Bayes Factors for Model Selection in Regression. Multivariate Behavioral Research, 47(6), 877-903. doi:10.1080/00273171.2012.734737
    • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356-374. doi:10.1016/j.jmp.2012.08.001
    • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225- 37. doi:10.3758/PBR.16.2.225
    • Rudolph, U., & Möhler, H. (2004). Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annual Review of Pharmacology and Toxicology, 44(14), 475-98. doi:10.1146/annurev.pharmtox.44.101802.121429
    • Saxena, N., Muthukumaraswamy, S. D., Diukova, A., Singh, K., Hall, J., & Wise, R. (2013). Enhanced Stimulus-Induced Gamma Activity in Humans during Propofol-Induced Sedation. PloS one (Vol. 8). doi:10.1371/journal.pone.0057685
    • Schall, J. D., & Boucher, L. (2007). Executive control of gaze by the frontal lobes. Cognitive, Affective & Behavioral Neuroscience, 7(4), 396-412. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18189013
    • Schlauch, R. C., Waesche, M. C., Riccardi, C. J., Donohue, K. F., Blagg, C. O., Christensen, R. L., & Lang, A. R. (2010). A meta-analysis of the effectiveness of placebo manipulations in alcohol-challenge studies. Psychology of Addictive Behaviors : Journal of the Society of Psychologists in Addictive Behaviors, 24(2), 239-253. doi:10.1037/a0017709
    • Schomer, D. L., & Lopes da Silva, F. (2012). Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Book (Vol. 1). Retrieved from http://books.google.com/books?hl=fr&lr=&id=xSKqZxXOlukC&pgis=1
    • Schuckit, M. A. (1980). Self-rating of alcohol intoxication by young men with and without family histories of alcoholism. Journal of Studies on Alcohol, 41(3), 242-249.
    • Schweizer, T. A., & Vogel-Sprott, M. (2008). Alcohol-impaired speed and accuracy of cognitive functions: A review of acute tolerance and recovery of cognitive performance. Experimental and Clinical Psychopharmacology, 16(3), 240-250. doi:10.1037/1064- 1297.16.3.240
    • Schweizer, T. A., Vogel-Sprott, M., Dixon, M. J., & Jolicoeur, P. (2005). The stage-specific effect of alcohol on human information processing. Psychopharmacology, 178(1), 52-57. doi:10.1007/s00213-004-1972-x
    • Seilicovich, A., Duvilanski, B., Gonzalez, N. N., Rettori, V., Novara, A. M. D. E., & Plazas, S. F. D. E. (1985). The effect of acute ethanol administration on GABA receptor binding in cerebellum and hypothalamus. European Journal of Pharmacology, 111, 365-369.
    • Silveri, M. M., Cohen-Gilbert, J., Crowley, D. J., Rosso, I. M., Jensen, J. E., & Sneider, J. T. (2014). Altered Anterior Cingulate Neurochemistry in Emerging Adult Binge Drinkers with a History of Alcohol-Induced Blackouts. Alcoholism: Clinical and Experimental Research, 38(4), 969-979. doi:10.1111/acer.12346
    • Silveri, M. M., Sneider, J. T., Crowley, D. J., Covell, M. J., Acharya, D., Rosso, I. M., & Jensen, J. E. (2013). Frontal Lobe γ-Aminobutyric Acid Levels During Adolescence: Associations with Impulsivity and Response Inhibition. Biological Psychiatry, 1-9. doi:10.1016/j.biopsych.2013.01.033
    • Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349-374.
    • Smith, G. T., Fischer, S., Cyders, M. A., Annus, A. M., Spillane, N. S., & McCarthy, D. M. (2007). On the Validity and Utility of Discriminating Among Impulsivity-Like Traits. Assessment, 14(2), 155-170. doi:10.1177/1073191106295527
    • Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6(MAR). doi:10.3389/fpsyg.2015.00328
    • Soreni, N., Crosbie, J., Ickowicz, A., & Schachar, R. (2009). Stop Signal and Conners' Continuous Performance Tasks. Journal of Attention Disorders, 13(2), 137-143. doi:10.1177/1087054708326110
    • Soubrie, P. (1986). Serotonergic neurons and behavior. Journal de Pharmacologie, 17(2), 107- 112.
    • Spagnolli, F., Cerini, R., Cardobi, N., Barillari, M., Manganotti, P., Storti, S., & Mucelli, R. P. (2013). Brain modifications after acute alcohol consumption analyzed by resting state fMRI. Magnetic Resonance Imaging, 31(8), 1325-30. doi:10.1016/j.mri.2013.04.007
    • Spearman, C. (2009). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72-101.
    • Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goaldirected cognition. NeuroImage, 53(1), 303-17. doi:10.1016/j.neuroimage.2010.06.016
    • Stevenson, S. A., Elsley, J. K., & Corneil, B. D. (2009). A “gap effect” on stop signal reaction times in a human saccadic countermanding task. Journal of Neurophysiology, 101(2), 580-590. doi:10.1152/jn.90891.2008
    • Stockwell, T., Murphy, D., & Hodgson, R. (1983). Severity of Alcohol Dependence Questionnaire ( SADQ ). British Journal of Addiction, 78(2), 45-156.
    • Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408(6814), 857-860. doi:10.1038/35048576
    • Sumner, P., Edden, R. A. E., Bompas, A., Evans, C. J., & Singh, K. D. (2010a). More GABA, less distraction: a neurochemical predictor of motor decision speed. Nature Neuroscience, 13(7), 825-827. doi:10.1038/nn.2559
    • Sumner, P., Edden, R. A. E., Bompas, A., Evans, C. J., & Singh, K. D. (2010b). More GABA, less distraction: a neurochemical predictor of motor decision speed. Nature Neuroscience, 13(7), 825-827. doi:10.1038/nn.2559
    • Sumner, P., & Husain, M. (2008). At the edge of consciousness: automatic motor activation and voluntary control. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 14(5), 474-86. doi:10.1177/1073858408314435
    • Sutker, P. B., Tabakoff, B., Goist, K. C., & Randall, C. L. (1983). Acute alcohol intoxication, mood states and alcohol metabolism in women and men. Pharmacology, Biochemistry, and
    • Swanson, C. J., Perry, K. W., Koch-Krueger, S., Katner, J., Svensson, K. a., & Bymaster, F. P. (2006). Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology, 50(6), 755-760. doi:10.1016/j.neuropharm.2005.11.022
    • Swettenham, J. B., Muthukumaraswamy, S. D., & Singh, K. D. (2009). Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. Journal of Neurophysiology, 102(2), 1241-53. doi:10.1152/jn.91044.2008
    • Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G., & Jefferys, J. G. (1996). Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. The Journal of Physiology, 493 ( Pt 2, 471-84. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1158931&tool=pmcentrez& rendertype=abstract
    • Tretter, V., Ehya, N., Fuchs, K., & Sieghart, W. (1997). Stoichiometry and assembly of a recombinant GABAA receptor subtype. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(8), 2728-2737. doi:10.1085/jgp.110.5.485
    • Upile, T., Sipaul, F., Jerjes, W., Singh, S., Nouraei, S. A. R., El Maaytah, M., … Wright, A. (2007). The acute effects of alcohol on auditory thresholds. BMC Ear, Nose, and Throat Disorders, 7, 4. doi:10.1186/1472-6815-7-4
    • Valenzuela, C. F. (1997). Alcohol and neurotransmitter interactions. Alcohol Health and Research World, 21(2), 144-8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15704351
    • Van Veen, B. D., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44(9), 867-880. doi:10.1109/10.623056
    • Vassallo, S., Hons, B., & Abel, L. A. (2002). Electrophysiology and Psychophysics Ethanol effects on volitional versus reflexive saccades. Clinical and Experimental Ophthalmologyhalmology, 30, 208-212.
    • Vengeliene, V., Bilbao, a, Molander, a, & Spanagel, R. (2008). Neuropharmacology of alcohol addiction. British Journal of Pharmacology, 154(2), 299-315. doi:10.1038/bjp.2008.30
    • Verbruggen, F., Aron, A. R., Stevens, M. A., & Chambers, C. D. (2010). Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13966-13971. doi:10.1073/pnas.1001957107/- /DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1001957107
    • Verbruggen, F., & Logan, G. D. (2008a). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology. General, 137(4), 649-72. doi:10.1037/a0013170
    • Verbruggen, F., & Logan, G. D. (2008b). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418-24. doi:10.1016/j.tics.2008.07.005
    • Vorstius, C., Radach, R., Lang, A. R., & Riccardi, C. J. (2008). Specific visuomotor deficits due to alcohol intoxication: evidence from the pro- and antisaccade paradigms.
    • Vrba, J., & Robinson, S. E. (2001). Signal processing in magnetoencephalography. Methods (San Diego, Calif.), 25(2), 249-71. doi:10.1006/meth.2001.1238
    • Wallner, M., Hanchar, H. J., & Olsen, R. W. (2003). Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15218-23. doi:10.1073/pnas.2435171100
    • Wan, F. J., Berton, F., Madamba, S. G., Francesconi, W., & Siggins, G. R. (1996). Low ethanol concentrations enhance GABAergic inhibitory postsynaptic potentials in hippocampal pyramidal neurons only after block of GABAB receptors. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 5049-54. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=39404&tool=pmcentrez&re ndertype=abstract
    • Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 16(20), 6402-13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8815919
    • Weafer, J., Baggott, M. J., & de Wit, H. (2013). Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention. Experimental and Clinical Psychopharmacology, 21(6), 475-81. doi:10.1037/a0033659
    • Weafer, J., & Fillmore, M. T. (2008). Individual differences in acute alcohol impairment of inhibitory control predict ad libitum alcohol consumption. Psychopharmacology, 201(3), 315-24. doi:10.1007/s00213-008-1284-7
    • Weafer, J., & Fillmore, M. T. (2012). Comparison of alcohol impairment of behavioral and attentional inhibition. Drug and Alcohol Dependence, 126(1-2), 176-82. doi:10.1016/j.drugalcdep.2012.05.010
    • Weber, A. M., Soreni, N., & Noseworthy, M. D. (2013). A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain. Magma (New York, N.Y.). doi:10.1007/s10334-013-0420-5
    • Weiner, J. L., & Valenzuela, C. F. (2006). Ethanol modulation of GABAergic transmission: the view from the slice. Pharmacology & Therapeutics, 111(3), 533-54. doi:10.1016/j.pharmthera.2005.11.002
    • Wetherill, R. R., Bava, S., Thompson, W. K., Boucquey, V., Pulido, C., Yang, T. T., & Tapert, S. F. (2012). Frontoparietal connectivity in substance-naive youth with and without a family history of alcoholism. Brain Research, 1432(June 2011), 66-73. doi:10.1016/j.brainres.2011.11.013
    • Wetzels, R., & Wagenmakers, E.-J. (2012). A default Bayesian hypothesis test for correlations and partial correlations. Psychonomic Bulletin & Review, 19(6), 1057-64. doi:10.3758/s13423-012-0295-x
    • Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30(4), 669-689. doi:10.1016/S0191-8869(00)00064-7
    • Wick, M. J., Mihic, S. J., Ueno, S., Mascia, M. P., Trudell, J. R., Brozowski, S. J., … Harris, R. A. (1998). Mutations of ␥ -aminobutyric acid and glycine receptors change alcohol cutoff :
    • Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., & Ettinger, U. (2013). Reliability and plasticity of response inhibition and interference control. Brain and Cognition, 81(1), 82-94. doi:10.1016/j.bandc.2012.09.010
    • Zandbelt, B. B., Bloemendaal, M., Neggers, S. F. W., Kahn, R. S., & Vink, M. (2013). Expectations and violations: delineating the neural network of proactive inhibitory control. Human Brain Mapping, 34(9), 2015-24. doi:10.1002/hbm.22047
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article