Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Geophysical Union
Types: Article
Galactic cosmic ray flux at Earth is modulated by the heliospheric magnetic field. Heliospheric modulation potential, Φ, during grand solar minima is investigated using an open solar flux (OSF) model with OSF source based on sunspot number, R, and OSF loss on heliospheric current sheet inclination. Changing dominance between source and loss means Φ varies in- (anti-) phase with R during strong (weak) cycles, in agreement with Φ estimates from ice core records of 10Be concentration, which are in-phase during most of the last 300 years, but anti-phase during the Maunder Minimum. Model results suggest “flat” OSF cycles, such as solar cycle 20 result from OSF source and loss terms temporarily balancing throughout the cycle. Thus even if solar activity continues to decline steadily, the long-term drop in OSF through SC21 to SC23 may plateau during SC24, though reemerge in SC25 with the inverted phase relation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abreu, J. A., J. Beer, F. Steinhilber, S. M. Tobias, and N. O. Weiss (2008), For how long will the current grand maximum of solar activity persist?, Geophys. Res. Lett., 35, L20109, doi:10.1029/2008GL035442.
    • Alanko-Huotari, K., et al. (2007), Cyclic variations of the heliospheric tilt angle and cosmic ray modulation, Adv. Space Res., 40, 1064-1069, doi:10.1016/j.asr.2007.02.007.
    • Bard, L., et al. (1997), Solar modulation of cosmogenic nuclide production over the last millennium: Comparison between 14C and 10Be records, Earth Planet. Sci. Lett., 150, 453-462, doi:10.1016/S0012-821X(97) 00082-4.
    • Barnard, L., M. Lockwood, M. A. Hapgood, M. J. Owens, C. J. Davis, and F. Steinhilber (2011), Predicting space climate change, Geophys. Res. Lett., 38, L16103, doi:10.1029/2011GL048489.
    • Beer, J. (2000), Neutron monitor records in broader historical context, Space Sci. Rev., 93, 107-119, doi:10.1023/A:1026536226656.
    • Beer, J., et al. (1990), Use of be-10 in polar ice to trace the 11-year cycle of solar activity, Nature, 347, 164-166, doi:10.1038/347164a0.
    • Beer, J., et al. (1998), An active sun throughout the Maunder Minimum, Sol. Phys., 181, 237-249.
    • Berggren, A.-M., J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S. J. Johnsen, J. Abreu, and B. M. Vinther (2009), A 600-year annual 10Be record from the NGRIP ice core, Greenland, Geophys. Res. Lett., 36, L11801, doi:10.1029/2009GL038004.
    • Donadini, F., et al. (2010), Millennial variations of the geomagnetic field: From data recovery to field reconstruction, Space Sci. Rev., 155, 219-246, doi:10.1007/s11214-010-9662-y.
    • Harder, J. W., J. M. Fontenla, P. Pilewskie, E. C. Richard, and T. N. Woods (2009), Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797.
    • Heikkilä, U., et al. (2009), Meridional transport and deposition of atmospheric 10Be, Atmos. Chem. Phys., 9, 515-527.
    • Hoyt, D. V., and K. H. Schatten (1998), Group sunspot numbers: A new solar activity reconstruction, Sol. Phys., 181, 491-512.
    • King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.
    • Kovaltsov, G. A., and I. G. Usoskin (2010), A new 3D numerical model of cosmogenic nuclide 10Be production in the atmosphere, Earth Planet. Sci. Lett., 291, 182-188.
    • Lockwood, M. (2010), Solar change and climate: An update in the light of the current exceptional solar minimum, Proc. R. Soc. A, 466, 303-329, doi:10.1098/rspa.2009.0519.
    • Lockwood, M. (2012), Solar influence on global and regional climates, Surv. Geophys., 33, 503-534, doi:10.1007/s10712-012-9181-3.
    • Lockwood, M., and M. Owens (2009), The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux, Astrophys. J., 701, 964-973, doi:10.1088/0004- 637X/701/2/964.
    • Lockwood, M., and M. J. Owens (2011), Centennial changes in the heliospheric magnetic field and open solar flux: The consensus view from geomagnetic data and cosmogenic isotopes and its implications, J. Geophys. Res., 116, A04109, doi:10.1029/2010JA016220.
    • Lockwood, M., et al. (2009), The rise and fall of open solar flux during the current grand solar maximum, Astrophys. J., 700, 937-944, doi:10.1088/ 0004-637X/700/2/937.
    • Lockwood, M., et al. (2012), Solar cycle 24: What is the Sun up to?, Astron. Geophys., 53(3), 3.09-3.15, doi:10.1111/j.1468-4004.2012.53309.x.
    • Masarik, J., and J. Beer (2009), An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere, J. Geophys. Res., 114, D11103, doi:10.1029/2008JD010557.
    • McCracken, K. G. (2007), Heliomagnetic field near Earth, 1428-2005, J. Geophys. Res., 112, A09106, doi:10.1029/2006JA012119.
    • Owens, M. J., and M. Lockwood (2012), Cyclic loss of open solar flux since 1868: The link to heliospheric current sheet tilt and implications for the Maunder Minimum, J. Geophys. Res., 117, A04102, doi:10.1029/2011JA017193.
    • Owens, M. J., C. N. Arge, N. U. Crooker, N. A. Schwadron, and T. S. Horbury (2008a), Estimating total heliospheric magnetic flux from single-point in situ measurements, J. Geophys. Res., 113, A12103, doi:10.1029/2008JA013677.
    • Owens, M. J., N. U. Crooker, N. A. Schwadron, T. S. Horbury, S. Yashiro, H. Xie, O. C. St. Cyr, and N. Gopalswamy (2008b), Conservation of open solar magnetic flux and the floor in the heliospheric magnetic field, Geophys. Res. Lett., 35, L20108, doi:10.1029/2008GL035813.
    • Owens, M. J., N. U. Crooker, and M. Lockwood (2011a), How is open solar magnetic flux lost over the solar cycle?, J. Geophys. Res., 116, A04111, doi:10.1029/2010JA016039.
    • Owens, M. J., M. Lockwood, L. Barnard, and C. J. Davis (2011b), Solar cycle 24: Implications for energetic particles and long-term space climate change, Geophys. Res. Lett., 38, L19106, doi:10.1029/2011GL049328.
    • Sheeley, N. R., Jr., and Y.-M. Wang (2001), Coronal inflows and sector magnetism, Astrophys. J. Lett., 562, L107-L110, doi:10.1086/338104.
    • Solanki, S. K., et al. (2000), Evolution of the Sun's large-scale magnetic field since the Maunder Minimum, Nature, 408, 445-447, doi:10.1038/ 35044027.
    • Solanki, S. K., et al. (2004), Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431, 1084-1087, doi:10.1038/nature02995.
    • Spruit, H. C. (1977), Heat flow near obstacles in the solar convection zone, Sol. Phys., 55, 3-34, doi:10.1007/BF00150871.
    • Steinhilber, F., J. A. Abreu, J. Beer, and K. G. McCracken (2010), Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides, J. Geophys. Res., 115, A01104, doi:10.1029/ 2009JA014193.
    • Stuiver, M., and P. D. Quay (1980), Changes in atmospheric carbon-14 attributed to a variable Sun, Science, 207, 11-19.
    • Usoskin, I. G. (2008), A history of solar activity over millennia, Living Rev. Sol. Phys., 5, 3. [Available at http://solarphysics.livingreviews.org/ Articles/lrsp-2008-3/.]
    • Usoskin, I. G., and B. Kromer (2005), Reconstruction of the 14C production rate from measured relative abundance, Radicarbon, 47, 31-37.
    • Usoskin, I. G., K. Mursula, and G. A. Kovaltsov (2001), Heliospheric modulation of cosmic rays and solar activity during the Maunder Minimum, J. Geophys. Res., 106, 16,039-16,046, doi:10.1029/2000JA000105.
    • Usoskin, I. G., et al. (2003), Millennium-scale sunspot number reconstruction: Evidence for an unusually active Sun since the 1940s, Phys. Rev. Lett., 91(21), 211101, doi:10.1103/PhysRevLett.91.211101.
    • Usoskin, I. G., K. Alanko-Huotari, G. A. Kovaltsov, and K. Mursula (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951-2004, J. Geophys. Res., 110, A12108, doi:10.1029/2005JA011250.
    • Vaquero, J. M. (2007), Historical sunspot observations: A review, Adv. Space Res., 40, 929-941, doi:10.1016/j.asr.2007.01.087.
    • Wang, Y.-M., and N. R. Sheeley Jr. (1995), Solar implications of ULYSSES interplanetary field measurements, Astrophys. J. Lett., 447, L143-L146, doi:10.1086/309578.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article