LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: American Geophysical Union
Languages: English
Types: Article
Subjects:
In this study, we examine seasonal and geographical variability of marine aerosol\ud fine-mode fraction ( fm) and its impacts on deriving the anthropogenic component of\ud aerosol optical depth (ta) and direct radiative forcing from multispectral satellite\ud measurements. A proxy of fm, empirically derived from the Moderate Resolution Imaging\ud Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical\ud variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport\ud (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived\ud seasonally and spatially varying fm is then implemented into a method of estimating ta and\ud direct radiative forcing from the MODIS measurements. It is found that the use of a\ud constant value for fm as in previous studies would have overestimated ta by about 20%\ud over global ocean, with the overestimation up to �45% in some regions and seasons. The\ud 7-year (2001–2007) global ocean average ta is 0.035, with yearly average ranging from\ud 0.031 to 0.039. Future improvement in measurements is needed to better separate\ud anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol\ud direct radiative forcing.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, T. L., Y. Wu, D. A. Chu, B. Schmid, J. Redemann, and O. Dubovik (2005a), Testing the MODIS satellite retrieval of aerosol fine-mode fraction, J. Geophys. Res., 110, D18204, doi:10.1029/2005JD005978.
    • Anderson, T. L., et al. (2005b), A-Train strategy for quantifying direct climate forcing by anthropogenic aerosols, Bull. Am. Meteorol. Soc., 86, 1795 - 1809, doi:10.1175/BAMS-86-12-1795.
    • Bates, T. S., P. K. Quinn, D. J. Coffman, J. E. Johnson, T. L. Miller, D. S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, and C. Neus u¨ss (2001), Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview, J. Geophys. Res., 106(D18), 20,767 - 20,782, doi:10.1029/2000JD900578.
    • Bates, T. S., et al. (2006), Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: Estimates based on in-situ chemical and optical measurements and chemical transport modeling, Atmos. Chem. Phys., 6, 1657 - 1732.
    • Bellouin, N., O. Boucher, J. Haywood, and M. S. Reddy (2005), Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138 - 1141, doi:10.1038/nature04348.
    • Bellouin, N., A. Jones, J. Haywood, and S. A. Christopher (2008), Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model, J. Geophys. Res., 113, D10205, doi:10.1029/2007JD009385.
    • Bian, H., M. Chin, J. Rodriguez, H. Yu, J. E. Penner, and S. Strahan (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375 - 2386.
    • Chin, M., R. B. Rood, S.-J. Lin, J. F. Muller, and A. M. Thompson (2000a), Atmospheric sulfur cycle in the global model GOCART: Model description and global properties, J. Geophys. Res., 105(D20), 24,671 - 24,687, doi:10.1029/2000JD900384.
    • Chin, M., D. L. Savoie, B. J. Huebert, A. R. Bandy, D. C. Thornton, T. S. Bates, P. K. Quinn, E. S. Saltzman, and W. J. De Bruyn (2000b), Atmospheric sulfur cycle in the global model GOCART: Comparison with field observations and regional budgets, J. Geophys. Res., 105(D20), 24,689 - 24,712, doi:10.1029/2000JD900385.
    • Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. Duncan, R. Martin, J. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci., 59, 461 - 483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.
    • Christopher, S. A., J. Zhang, Y. J. Kaufman, and L. A. Remer (2006), Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans, Geophys. Res. Lett., 33, L15816, doi:10.1029/2005GL025535.
    • Goldammer, J. G., A. Sukhinin, and I. Csiszar (2004), The current fire situation in the Russian Federation: Implications for enhancing international and regional cooperation in the UN framework and the global programs on fire monitoring and assessment, Int. For. Fire News, 29, 89 - 111.
    • Haywood, J., and M. Schulz (2007), Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007), Geophys. Res. Lett., 34, L20701, doi:10.1029/ 2007GL030749.
    • Higurashi, A., and T. Nakajima (2002), Detection of aerosol types over the East China Sea near Japan from four-channel satellite data, Geophys. Res. Lett., 29(17), 1836, doi:10.1029/2002GL015357.
    • Jones, T. A., and S. A. Christopher (2007), MODIS derived fine mode fraction characteristics of marine, dust, and anthropogenic aerosols over the ocean, constrained by GOCART, MOPITT, and TOMS, J. Geophys. Res., 112, D22204, doi:10.1029/2007JD008974.
    • Kahn, R., P. Banerjee, and D. McDonald (2001), The sensitivity of multiangle imaging to natural mixtures of aerosols over ocean, J. Geophys. Res., 106(D16), 18,219 - 18,238, doi:10.1029/2000JD900497.
    • Kaufman, Y., A. Smirnov, B. Holben, and O. Dubovik (2001), Baseline maritime aerosol: Methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28(17), 3251 - 3254.
    • Kaufman, Y. J., D. Tanre´, and O. Boucher (2002), A satellite view of aerosols in the climate system: Review, Nature, 419, 215 - 223, doi:10.1038/nature01091.
    • Kaufman, Y. J., O. Boucher, D. Tanre´, M. Chin, L. A. Remer, and T. Takemura (2005a), Aerosol anthropogenic component estimated from satellite data, Geophys. Res. Lett., 32, L17804, doi:10.1029/ 2005GL023125.
    • Kaufman, Y. J., I. Koren, L. A. Remer, D. Tanre´, P. Ginoux, and S. Fan (2005b), Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean, J. Geophys. Res., 110, D10S12, doi:10.1029/ 2003JD004436.
    • Kleidman, R. G., N. T. O'Neill, L. A. Remer, Y. J. Kaufman, T. F. Eck, D. Tanre´, O. Dubovik, and B. N. Holben (2005), Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean, J. Geophys. Res., 110, D22205, doi:10.1029/ 2005JD005760.
    • Leck, C., and E. K. Bigg (2005), Source and evolution of the marine aerosol - A new perspective, Geophys. Res. Lett., 32, L19803, doi:10.1029/2005GL023651.
    • Levy, R., L. A. Remer, S. Mattoo, E. Vermote, and Y. Kaufman (2007), Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance, J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.
    • Liss, P. S. (2007), Trace gas emissions from the marine biosphere, Philos. Trans. R. Soc., Ser. A., 365, 1697 - 1704, doi:10.1098/rsta.2007.2039.
    • O'Dowd, C. D., M. C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y. J. Yoon, and J. P. Putaud (2004), Biogenically driven organic contribution to marine aerosol, Nature, 431, 676 - 680, doi:10.1038/nature02959.
    • Penner, J. E., R. J. Charlson, J. M. Hales, N. S. Laulainen, R. Leifer, T. Novakov, J. Ogren, L. F. Radke, S. E. Schwartz, and L. Travis (1994), Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols, Bull. Am. Meteorol. Soc., 75, 375 - 400, doi:10.1175/ 1520-0477(1994)075<0375:QAMUOC>2.0.CO;2.
    • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.
    • Remer, L. A., and Y. J. Kaufman (2006), Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data, Atmos. Chem. Phys., 6, 237 - 253.
    • Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947 - 973, doi:10.1175/JAS3385.1.
    • Remer, L. A., D. Tanre´, Y. J. Kaufman, R. C. Levy, and S. Mattoo (2006), Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005, in ATBD-MOD-96, 88 pp., NASA Goddard Space Flight Cent., Greenbelt, Md. (Available at http://modis-atmos.gsfc.nasa. gov/reference_atbd.php)
    • Remer, L. A., et al. (2008), An emerging aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi:10.1029/ 2007JD009661.
    • Rudich, Y., Y. J. Kaufman, U. Dayan, H. Yu, and R. G. Kleidman (2008), Estimation of transboundary transport of pollution aerosols by remote sensing in the eastern Mediterranean, J. Geophys. Res., 113, D14S13, doi:10.1029/2007JD009601.
    • Schulz, M., et al. (2006), Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225 - 5246.
    • Shinozuka, Y., A. D. Clarke, S. G. Howell, V. N. Kapustin, and B. J. Huebert (2004), Sea-salt vertical profiles over the Southern and tropical Pacific oceans: Microphysics, optical properties, spatial variability, and variations with wind speed, J. Geophys. Res., 109, D24201, doi:10.1029/ 2004JD004975.
    • Smirnov, A., B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore (2002), Optical properties of atmospheric aerosol in maritime environments, J. Atmos. Sci., 59, 501 - 523, doi:10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2.
    • Smirnov, A., et al. (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett., 33, L14817, doi:10.1029/2006GL026051.
    • Tanre´, D., Y. J. Kaufman, M. Herman, and S. Mattoo (1997), Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102(D14), 16,971 - 16,988, doi:10.1029/ 96JD03437.
    • Tanre´, D., F. M. Bre´on, J. L. Deuze´, M. Herman, P. Goloub, F. Nadal, and A. Marchand (2001), Global observation of anthropogenic aerosols from satellite, Geophys. Res. Lett., 28(24), 4555 - 4558, doi:10.1029/ 2001GL013036.
    • Wilson, S. R., and B. W. Forgan (2002), Aerosol optical depth at Cape Grim, Tasmania, 1986 - 1999, J. Geophys. Res., 107(D8), 4068, doi:10.1029/2001JD000398.
    • Winker, D. M., W. H. Hunt, and M. J. McGill (2007), Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/ 2007GL030135.
    • Wotawa, G., L.-E. De Geer, A. Bekcer, R. D'Amours, M. Jean, R. Servranckx, and K. Ungar (2006), Inter- and intra-continental transport of radioactive cesium released by boreal forest fires, Geophys. Res. Lett., 33, L12806, doi:10.1029/2006GL026206.
    • Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. N. Holben (2004), The direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi:10.1029/2003JD003914.
    • Yu, H., et al. (2006), A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613 - 666.
    • Yu, H., L. A. Remer, M. Chin, H. Bian, R. G. Kleidman, and T. Diehl (2008), A satellite-based assessment of trans-pacific transport of pollution aerosol, J. Geophys. Res., 113, D14S12, doi:10.1029/2007JD009349.
    • Zhang, J., J. S. Reid, and B. N. Holben (2005), An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products, Geophys. Res. Lett., 32, L15803, doi:10.1029/2005GL023254.
    • Zhao, T. X.-P., H. Yu, I. Laszlo, M. Chin, and W. C. Conant (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Radiat. Transfer, 109(7), 1162 - 1186, doi:10.1016/j.jqsrt.2007.10.006.
    • Zhou, M., H. Yu, R. E. Dickinson, O. Dubovik, and B. N. Holben (2005), A normalized description of the direct effect of key aerosol types on solar radiation as estimated from AERONET aerosols and MODIS albedos, J. Geophys. Res., 110, D19202, doi:10.1029/2005JD005909. N. Bellouin, Met Office, Hadley Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UK.
    • H. Bian, M. Chin, T. Diehl, R. G. Kleidman, L. A. Remer, and H. Yu, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Code 613.2, Greenbelt, MD 20771, USA. ()
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    44
    44%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article