You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
In this article we consider the a priori and a posteriori error analysis of two-grid hp-version discontinuous Galerkin finite element methods for the numerical solution of a strongly monotone quasi-Newtonian fluid flow problem. The basis of the two-grid method is to first solve the underlying nonlinear problem on a coarse finite element space; a fine grid solution is then computed based on undertaking a suitable linearization of the discrete problem. Here, we study two alternative linearization techniques: the first approach involves evaluating the nonlinear viscosity coefficient using the coarse grid solution, while the second method utilizes an incomplete Newton iteration technique. Energy norm error bounds are deduced for both approaches. Moreover, we design an hp-adaptive refinement strategy in order to automatically design the underlying coarse and fine finite element spaces. Numerical experiments are presented which demonstrate the practical performance of both two-grid discontinuous Galerkin methods.
[1] P. R. Amestoy, I. S. Du , J. Koster, and J.-Y. L'Excellent. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15{41, 2001.
[2] P. R. Amestoy, I. S. Du , and J.-Y. L'Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Engrg., 184:501{520, 2000.
[3] P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet. Hybrid scheduling for the parallel solution of linear systems. Parallel Comput., 32(2):136{156, 2006.
[4] O. Axelsson and W. Layton. A two-level method for the discretization of nonlinear boundary value problems. SIAM J. Numer. Anal., 33(6):2359{2374, 1996.
[5] O. Axelsson and W. Layton. A two-level method for the discretization of nonlinear boundary value problems. SIAM J. Numer. Anal., 33(6):2359{2374, 1996.
[6] I. Babuska and M. Suri. The h p version of the nite element method with quasiuniform meshes. RAIRO Model. Math. Anal. Numer., 21(2):199{238, 1987.
[7] S. Berrone and E. Suli. Two-sided a posteriori error bounds for incompressible quasiNewtonian ows. IMA J. Numer. Anal., 28:382{421, 2008.
[8] C. Bi and V. Ginting. Two-grid nite volume element method for linear and nonlinear elliptic problems. Numer. Math., 108:177{198, 2007.
[9] C. Bi and V. Ginting. Two-grid discontinuous Galerkin method for quasi-linear elliptic problems. J. Sci. Comput., 49(3):311{331, 2011.
[10] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.
[11] S. Congreve. Two-Grid hp-Version Discontinuous Galerkin Finite Element Methods for Quasilinear PDEs. PhD thesis, University of Nottingham, submitted.
[13] S. Congreve, P. Houston, E. Suli, and T. P. Wihler. hp-version discontinuous Galerkin nite element methods for strongly monotone quasi-Newtonian ows. IMA J. Numer. Anal., In press.
[16] C. N. Dawson, M. F. Wheeler, and C. S. Woodward. A two-grid nite di erence scheme for non-linear parabolic equations. SIAM J. Numer. Anal., 35:435{452, 1998.
[17] P. Hansbo and M. G. Larson. Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg., 191(17{ 18):1895{1908, 2002.
[18] P. Houston, D. Schotzau, and T. P. Wihler. hp-adaptive discontinuous Galerkin nite element methods for the Stokes problem. In P. Neittaanmaki, T. Rossi, S. Korotov, J. Periaux, and D. Knorzer, editors, Proc. of the European Congress on Computational Methods in Applied Sciences and Engineering, volume II, 2004.
[19] P. Houston, D. Schotzau, and T. P. Wihler. Energy norm a-posteriori error estimation of hpadaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci., 17:33{62, 2007.
[20] P. Houston and E. Suli. A note on the design of hp-adaptive nite element methods for elliptic partial di erential equations. Comput. Methods Appl. Mech. Engrg., 194(2{5):229{243, 2005.
[21] P. Houston, E. Suli, and T. P. Wihler. A posteriori error analysis of hp-version discontinuous Galerkin nite-element methods for second-order quasi-linear PDEs. IMA J. Numer. Anal., 28(2):245{273, 2008.
[22] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal., 41(6):2374{2399, 2003.
[23] M. Marion and J. Xu. Error estimates on a new nonlinear Galerkin method based on two-grid nite elements. SIAM J. Numer. Anal., 32(4):1170{1184, 1995.
[24] D. Schotzau, C. Schwab, and A. Toselli. Mixed hp-DGFEM for incompressible ows. SIAM J. Numer. Anal., 40(6):2171{2194, 2002.
[25] C. Schwab. p- and hp-FEM | Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford, 1998.
[30] L. Wu and M. Allen. Two-grid method for mixed nite-element solution of coupled reactiondi usion systems. Numerical Methods for Partial Di erential Equations, 1999:589{604, 1999.
[31] J. Xu. A new class of iterative methods for nonselfadjoint or inde nite problems. SIAM J. Numer. Anal., 29:303{319, 1992.
[32] J. Xu. A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comp., 15:231{ 237, 1994.
[33] J. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal., 33(5):1759{1777, 1996.
[34] L. Zhu, S. Giani, P. Houston, and D. Schotzau. Energy norm a posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions. Math. Models Methods Appl. Sci., 21(2):267{306, 2011.
[35] L. Zhu and D. Schotzau. A robust a posteriori error estimate for hp-adaptive DG methods for convection-di usion equations. IMA J. Numer. Anal., 31(3):971{1005, 2010.