LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Due to their unique properties, p-type copper oxide nanostructures have demonstrated promising potential for various applications, especially for the detection of ethanol vapour and other volatile organic compounds (VOCs). In this work a simple and cost-effective synthesis from chemical solutions (SCS) at low temperatures (≤80 °C) and rapid thermal annealing (RTA) process were used to grow zinc-doped copper oxide (ZnxCu1−xOy) nanostructures. The structural, morphological, vibrational, chemical, electronic and sensorial characteristics of ZnxCu1−xOy nanocrystallite layers obtained by using such an efficient approach based on both, the SCS and RTA processes, have been studied. The investigations demonstrated the possibility to tune sensitivity from VOC to H2, as well as an improved response and high selectivity with respect to hydrogen gas for ZnxCu1−xOy nano-crystalline thin films with x = 0.03. Density functional theory calculations showed that the charge transfer together with changes in the Fermi level facilitate H2 gas sensing, which is further enhanced by Zn doping. Hydrogen gas sensing with a high response and selectivity using p-type hybrid semiconductor nanostructures has been reported. An improved stability in humid air was observed by exposure of doped samples to rapid thermal annealing process for the first time. The experimental and calculation results provide an alternative to sensitive and selective detection of ethanol and hydrogen gases, which would be of particular benefit in the area of public security, industrial and environmental applications
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 Y. Xia, Z. Yang and Y. Zhu, J. Mater. Chem. A, 2013, 1, 9365- 9381.
    • 2 X. Xiao, C. Xu, J. Shao, L. Zhang, T. Qin, S. Li, H. Ge, Q. Wang and L. Chen, J. Mater. Chem. A, 2015, 3, 5517-5524.
    • 3 R. Shabu, A. Moses Ezhil Raj, C. Sanjeeviraja and C. Ravidhas, Mater. Res. Bull., 2015, 68, 1-8.
    • 4 L. Cheng, M. Shao, D. Chen and Y. Zhang, Mater. Res. Bull., 2010, 45, 235-239.
    • 5 O. Lupan, G. A. Emelchenko, V. V. Ursaki, G. Chai, A. N. Redkin, A. N. Gruzintsev, I. M. Tiginyanu, L. Chow, L. K. Ono, B. Roldan Cuenya, H. Heinrich and E. E. Yakimov, Mater. Res. Bull., 2010, 45, 1026-1032.
    • 6 D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whiteld, D.-J. Yang, E. Longo, H. L. Tuller and J. A. Varela, Adv. Funct. Mater., 2013, 23, 1759-1766.
    • 7 O. Lupan, V. Cretu, V. Postica, M. Ahmadi, B. R. Cuenya, L. Chow, I. Tiginyanu, B. Viana, T. Pauport´e and R. Adelung, Sens. Actuators, B, 2016, 223, 893-903.
    • 8 O. Lupan, G. Chai and L. Chow, Microelectron. Eng., 2008, 85, 2220-2225.
    • 9 H. J. Kang, P. Dai, B. J. Campbell, P. J. Chupas, S. Rosenkranz, P. L. Lee, Q. Huang, S. Li, S. Komiya and Y. Ando, Nat. Mater., 2007, 6, 224-229.
    • 10 Y. Tokura, H. Takagi and S. Uchida, Nature, 1989, 337, 345- 347.
    • 11 S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan, Sens. Actuators, B, 2006, 113, 468-476.
    • 12 I. M. Tiginyanu, O. Lupan, V. V. Ursaki, L. Chow and M. Enachi, in Compr. Semic. Sci. Tech., ed. P. B. F. Kamimura, Elsevier, Amsterdam, 2011, pp. 396-479, DOI: 10.1016/b978-0-44-453153-7.00105-x.
    • 13 O. Lupan, V. Cretu, V. Postica, N. Ababii, O. Polonskyi, V. Kaidas, F. Schutt, Y. K. Mishra, E. Monaico, I. Tiginyanu, V. Sontea, T. Strunskus, F. Faupel and R. Adelung, Sens. Actuators, B, 2016, 224, 434-448.
    • 14 Y.-H. Choi, D.-H. Kim, S.-H. Hong and K. S. Hong, Sens. Actuators, B, 2013, 178, 395-403.
    • 15 N. G. Cho, I.-S. Hwang, H.-G. Kim, J.-H. Lee and I.-D. Kim, Sens. Actuators, B, 2011, 155, 366-371.
    • Acknowledgements 16 H.-J. Kim and J.-H. Lee, Sens. Actuators, B, 2014, 192, 607- 627.
    • Dr Lupan acknowledges the Alexander von Humboldt Founda- 17 L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. Bao, T. Wu, C. M. Li, tion for the research fellowship for experienced researchers Z. Shen, J. Zhang and H. Gong, Nanotechnology, 2009, 20, 3-3MOL/1148833 STP at the Institute for Materials Science, 085203.
    • University of Kiel, Germany. This research was sponsored 18 T. B. Coplen, J. K. Bo¨hlke, P. De Bievre, T. Ding, N. Holden, partially by the German Research Foundation (DFG) under the J. Hopple, H. Krouse, A. Lamberty, H. Peiser and K. Revesz, scheme AD 183/12-1. This research was partly supported by the Pure Appl. Chem., 2002, 74, 1987-2017.
    • 72 J. Irwin, J. Chrzanowski, T. Wei, D. Lockwood and A. Wold, Phys. C, 1990, 166, 456-464.
    • 73 H.-L. Liu, C.-C. Chen, C.-T. Chia, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, S. Keller and S. P. DenBaars, Chem. Phys. Lett., 2001, 345, 245-251.
    • 74 H. Fan, B. Zou, Y. Liu and S. Xie, Nanotechnology, 2006, 17, 1099.
    • 75 S. K. Maji, N. Mukherjee, A. Mondal, B. Adhikary and B. Karmakar, J. Solid State Chem., 2010, 183, 1900-1904.
    • 76 K. Reimann and K. Syassen, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, 39, 11113.
    • 77 J. Chang, H. Kuo, I. Leu and M. Hon, Sens. Actuators, B, 2002, 84, 258-264.
    • 78 N. Yamazoe, Sens. Actuators, B, 1991, 5, 7-19.
    • 79 J. Fan and R. Freer, J. Appl. Phys., 1995, 77, 4795-4800.
    • 80 M. Hu¨bner, C. E. Simion, A. Tomescu-St˘anoiu, S. Pokhrel, N. Bˆarsan and U. Weimar, Sens. Actuators, B, 2011, 153, 347-353.
    • 81 O. Lupan, V. Cretu, V. Postica, O. Polonskyi, N. Ababii, F. Schutt, V. Kaidas, F. Faupel and R. Adelung, Sens. Actuators, B, 2016, 230, 832-843.
    • 82 J. Ding, T. J. McAvoy, R. E. Cavicchi and S. Semancik, Sens. Actuators, B, 2001, 77, 597-613.
    • 83 R. K. Bedi and I. Singh, ACS Appl. Mater. Interfaces, 2010, 2, 1361-1368.
    • 84 A. Mart´ınez-Ruiz, M. G. Moreno and N. Takeuchi, Solid State Sci., 2003, 5, 291-295.
    • 85 C. W. Na, H.-S. Woo, I.-D. Kim and J.-H. Lee, Chem. Commun., 2011, 47, 5148-5150.
    • 86 Z. Tianshu, P. Hing, Y. Li and Z. Jiancheng, Sens. Actuators, B, 1999, 60, 208-215.
    • 87 J. H. Yu and G. M. Choi, Sens. Actuators, B, 2001, 75, 56-61.
    • 88 Y. Maimaiti, M. Nolan and S. D. Elliott, Phys. Chem. Chem. Phys., 2014, 16, 3036-3046.
    • 89 Q. Yuan, Y.-P. Zhao, L. Li and T. Wang, J. Phys. Chem. C, 2009, 113, 6107-6113.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article