LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Languages: English
Types: Unknown
Subjects:
The work is concerned with the application of the hybrid finite element method to thin plate and cylindrical shell structures. One plate bending element and three shell elements are studied. The plate element is the same as one already appearing in the literature but it is also used here to form the basis of a flat triangular element for the analysis of shells. The main effort, however, has been devoted to the development of two new hybrid cylindrical shell elements. One is rectangular and the other of triangular planform. The aim has been to use fully compatible edge displacement assumptions (with exact representations of rigid body motions) together with stress assumptions consisting of complete polynomials. In assessing the performance of these elements the primary concern has been the quality of stress predictions. The two elements are tested separately on a variety of problems and found to give good results which compare well, in some cases, with those obtained using more complicated displacement assumption elements. They are the used together to analyse a cylinder intersection problem – that of a mitred bend in a pipe subjected to an in-plane bending moment. Results comparing well with some available strain gauge readings are obtained. As a result of the work some general conclusions on the hybrid method are drawn. More specific conclusions relating to these elements are also noted and suggestions for further work are made.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article