LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Elsevier Science BV
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: High Energy Physics::Experiment, Astrophysics::Cosmology and Extragalactic Astrophysics, Nuclear Experiment, Astrophysics::High Energy Astrophysical Phenomena
The B0\ud s\ud and B0 mixing frequencies, [triangle]ms and\ud [triangle]md, are measured using a data sample corresponding to an\ud integrated luminosity of 1.0 fb−1 collected by the LHCb experiment\ud in pp collisions at a centre of mass energy of 7 TeV\ud during 2011. Around\ud 1.8×106 candidate events are selected\ud of the type B0\ud (s)\ud → D−\ud (s)\ud μ+ (+ anything), where about half\ud are from peaking and combinatorial backgrounds. To determine\ud the B decay times, a correction is required for the\ud momentum carried by missing particles, which is performed\ud using a simulation-based statistical method. Associated production\ud of muons or mesons allows us to tag the initialstate\ud flavour and so to resolve oscillations due to mixing.\ud We obtain\ud [triangle]ms\ud =\ud .\ud 17.93\ud ±\ud 0.22(stat)\ud ±\ud 0.15(syst)\ud .\ud ps−1 ,\ud [triangle]md\ud =\ud .\ud 0.503\ud ±\ud 0.011(stat)\ud ±\ud 0.013(syst)\ud .\ud ps−1 .\ud The hypothesis of no oscillations is rejected by the equivalent\ud of 5.8 standard deviations for B0\ud s\ud and 13.0 standard deviations\ud for B0 . This is the first observation of B0\ud s\ud mixing to\ud be made using only semileptonic decays.\ud
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Descotes-Genon, D. Ghosh, J. Matias, M. Ramon, Exploring new physics in the C7-C7 plane, JHEP 1106 (2011) 099, arXiv:1104.3342.
    • [2] CLEO Collaboration, R. Ammar, et al., Evidence for penguin-diagram decays: First observation of B → K∗(892)γ , Phys. Rev. Lett. 71 (1993) 674.
    • [3] Belle Collaboration, J. Wicht, et al., Observation of Bs0 → φγ and search for Bs0 → γ γ decays at Belle, Phys. Rev. Lett. 100 (2008) 121801, arXiv:0712.2659.
    • [4] Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of b-hadron, c-hadron, and tau-lepton properties as of early 2012, arXiv:1207.1158.
    • [5] BaBar Collaboration, B. Aubert, et al., Measurement of branching fractions and CP and isospin asymmetries in B → K∗(892)γ decays, Phys. Rev. Lett. 103 (2009) 211802, arXiv:0906.2177; Belle Collaboration, M. Nakao, et al., Measurement of the B → K∗γ branching fractions and asymmetries, Phys. Rev. D 69 (2004) 112001, arXiv:hep-ex/0402042; CLEO Collaboration, T. Coan, et al., Study of exclusive radiative B meson decays, Phys. Rev. Lett. 84 (2000) 5283, arXiv:hep-ex/9912057.
    • [6] A. Ali, B.D. Pecjak, C. Greub, Towards B → V γ decays at NNLO in SCET, Eur. Phys. J. C 55 (2008) 577, arXiv:0709.4422.
    • [7] K. de Bruyn, et al., Branching ratio measurements of Bs decays, Phys. Rev. D 86 (2012) 014027, arXiv:1204.1735.
    • [8] M. Matsumori, A.I. Sanda, Y.Y. Keum, CP asymmetry, branching ratios and isospin breaking effects of B0 → K∗0γ with perturbative QCD approach, Phys. Rev. D 72 (2005) 014013, arXiv:hep-ph/0406055.
    • [9] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.
    • [10] C. Dariescu, M.-A. Dariescu, B0 → K∗0γ decay within MSSM, arXiv:0710.3819; M. Aoki, G.-C. Cho, N. Oshimo, Decay rate asymmetry in B → Xs γ as a signature of supersymmetry, Phys. Rev. D 60 (1999) 035004, arXiv:hep-ph/9811251; M. Aoki, G.-C. Cho, N. Oshimo, CP asymmetry for radiative B meson decay in the supersymmetric standard model, Nucl. Phys. B 554 (1999) 50, arXiv:hep-ph/9903385; A.L. Kagan, M. Neubert, Direct CP violation in B → Xs γ decays as a signature of new physics, Phys. Rev. D 58 (1998) 094012, arXiv:hep-ph/9803368.
    • [11] LHCb Collaboration, R. Aaij, et al., Measurement of the ratio of branching fractions B(B0 → K∗0γ )/B(Bs0 → φγ ), Phys. Rev. D 85 (2012) 112013, arXiv:1202.6267.
    • [12] LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
    • [13] T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, JHEP 0605 (2006) 026, arXiv:hepph/0603175.
    • [14] I. Belyaev, et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (NSS/MIC) (2010) 1155.
    • [15] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152.
    • [16] P. Golonka, Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97, arXiv:hep-ph/0506026.
    • [17] GEANT4 Collaboration, J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; GEANT4 Collaboration, S. Agostinelli, et al., GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
    • [18] M. Clemencic, et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
    • [19] O. Deschamps, et al., Photon and neutral pion reconstruction, LHCb-2003-091.
    • [20] LHCb Collaboration, R. Aaij, et al., Measurement of b-hadron masses, Phys. Lett. B 708 (2012) 241, arXiv:1112. 4896.
    • [21] HERA-B Collaboration, I. Abt, et al., K∗0 and φ meson production in proton-nucleus interactions at √s = 41.6 GeV, Eur. Phys. J. C 50 (2007) 315, arXiv:hep-ex/0606049.
    • [22] S. Baker, R.D. Cousins, Clarification of the use of chi-square and likelihood functions in fits to histograms, Nucl. Instrum. Meth. A 221 (1984) 437.
    • [23] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
    • [24] ARGUS Collaboration, H. Albrecht, et al., Search for hadronic b → u decays, Phys. Lett. B 241 (1990) 278.
    • [25] P. Ball, G.W. Jones, R. Zwicky, B → V γ beyond QCD factorization, Phys. Rev. D 75 (2007) 054004, arXiv:hepph/0612081.
    • [26] LHCb Collaboration, R. Aaij, et al., Measurement of b hadron production fractions in 7 TeV pp collisions, Phys. Rev. D 85 (2012) 032008, arXiv:1111.2357.
    • [27] LHCb Collaboration, Measurement of direct CP violation in charmless charged two-body B decays at LHCb using 2010 data, LHCb-CONF-2011-042.
    • J.J. Velthuis 43, M. Veltri 17,g, G. Veneziano 36, M. Vesterinen 35, B. Viaud 7, I. Videau 7, D. Vieira 2, X. Vilasis-Cardona 33,n, J. Visniakov 34, A. Vollhardt 37, D. Volyanskyy 10, D. Voong 43, A. Vorobyev 27, V. Vorobyev 31, C. Voß 55, H. Voss 10, R. Waldi 55, R. Wallace 12, S. Wandernoth 11, J. Wang 53, D.R. Ward 44, N.K. Watson 42, A.D. Webber 51, D. Websdale 50, M. Whitehead 45, J. Wicht 35, D. Wiedner 11, L. Wiggers 38, G. Wilkinson 52, M.P. Williams 45,46, M. Williams 50, F.F. Wilson 46, J. Wishahi 9, M. Witek 23, W. Witzeling 35, S.A. Wotton 44, S. Wright 44, S. Wu 3, K. Wyllie 35, Y. Xie 47, F. Xing 52, Z. Xing 53, Z. Yang 3, R. Young 47, X. Yuan 3, O. Yushchenko 32, M. Zangoli 14, M. Zavertyaev 10,a, F. Zhang 3, L. Zhang 53, W.C. Zhang 12, Y. Zhang 3, A. Zhelezov 11, L. Zhong 3, A. Zvyagin 35
    • 1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
    • 2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
    • 3 Center for High Energy Physics, Tsinghua University, Beijing, China
    • 4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
    • 5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
    • 6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
    • 7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
    • 8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
    • 9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
    • 10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
    • 11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
    • 12 School of Physics, University College Dublin, Dublin, Ireland
    • 13 Sezione INFN di Bari, Bari, Italy
    • 14 Sezione INFN di Bologna, Bologna, Italy
    • 15 Sezione INFN di Cagliari, Cagliari, Italy
    • 16 Sezione INFN di Ferrara, Ferrara, Italy
    • 17 Sezione INFN di Firenze, Firenze, Italy
    • 18 Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
    • 19 Sezione INFN di Genova, Genova, Italy
    • 20 Sezione INFN di Milano Bicocca, Milano, Italy
    • 21 Sezione INFN di Roma Tor Vergata, Roma, Italy
    • 22 Sezione INFN di Roma La Sapienza, Roma, Italy
    • 23 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
    • 24 AGH University of Science and Technology, Kraków, Poland
    • 25 Soltan Institute for Nuclear Studies, Warsaw, Poland
    • 26 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
    • 27 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
    • 28 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
    • 29 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
    • 30 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
    • 31 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
    • 32 Institute for High Energy Physics (IHEP), Protvino, Russia
    • 33 Universitat de Barcelona, Barcelona, Spain
    • 34 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
    • 35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
    • 36 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    • 37 Physik-Institut, Universität Zürich, Zürich, Switzerland
    • [1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 84, 092001 (2011).
    • [2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108, 161801 (2012).
    • [3] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 86, 112005 (2012).
    • [4] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 694, 209 (2010).
    • [5] A. Keune, Ph.D. thesis, EPFL, Switzerland, 2012.
    • [6] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 109, 101802 (2012).
    • [7] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
    • [8] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3, S08005 (2008).
    • [9] M. Adinolfi et al., arXiv:1211.6759.
    • [10] R. Aaij et al., JINST 8, P04022 (2013).
    • [11] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).
    • [12] T. Sjo¨strand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
    • [13] I. Belyaev et al., Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, Knoxville, TN, 2010), p. 1155.
    • [14] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
    • [15] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
    • [16] J. Allison et al. (GEANT4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006); S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
    • [17] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, J. Phys. Conf. Ser. 331, 032023 (2011).
    • [18] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics, Krakow, 1986 [DESY-F31-86-02].
    • [19] A. Jaeger et al., Report No. LHCb-PUB-2011-025.
    • [20] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 04 (2013) 001.
    • [21] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
    • [22] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 111101 (2010).
    • [1] M. Gronau and D. London, How to determine all the angles of the unitarity triangle from Bd0 ! DKS and Bs0 ! D , Phys. Lett. B 253 (1991) 483 [INSPIRE].
    • [2] M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172 [INSPIRE].
    • [3] I. Dunietz, CP violation with selftagging Bd modes, Phys. Lett. B 270 (1991) 75 [INSPIRE].
    • [4] M. Gronau, Improving bounds on gamma in B 557 (2003) 198 [hep-ph/0211282] [INSPIRE].
    • [12] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
    • [13] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    • [14] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Nucl. Sci. Symp. Conf. Rec. (2010) 1155.
    • [15] D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
    • [16] GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270
    • [17] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [18] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
    • [19] K.S. Cranmer, Kernel estimation in high-energy physics, Comput. Phys. Commun. 136 (2001) 198 [hep-ex/0011057] [INSPIRE].
    • [20] LHCb collaboration, First evidence of direct CP-violation in charmless two-body decays of Bs mesons, Phys. Rev. Lett. 108 (2012) 201601 [arXiv:1202.6251] [INSPIRE].
    • [21] LHCb collaboration, Letter of Intent for the LHCb Upgrade, CERN-LHCC-2011-001.
    • [22] LHCb collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, CERN-LHCC-2012-007.
    • 44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 45 Department of Physics, University of Warwick, Coventry, United Kingdom
    • 46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
    • 47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
    • 50 Imperial College London, London, United Kingdom
    • 51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    • 52 Department of Physics, University of Oxford, Oxford, United Kingdom
    • 53 Syracuse University, Syracuse, NY, United States
    • 54 Pontif cia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
    • 55 Institut fur Physik, Universitat Rostock, Rostock, Germany, associated to 11
    • 56 Institute of Information Technology, COMSATS, Lahore, Pakistan, associated to 53
    • 57 University of Cincinnati, Cincinnati, OH, United States, associated to 53
    • [1] S. Bianco, F. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cimento 26N7, 1 (2003).
    • [2] G. Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53, 431 (2003).
    • [3] M. Artuso, B. Meadows, and A. A. Petrov, Annu. Rev. Nucl. Part. Sci. 58, 249 (2008).
    • [4] G. Blaylock, A. Seiden, and Y. Nir, Phys. Lett. B 355, 555 (1995).
    • [5] A. A. Petrov, Int. J. Mod. Phys. A 21, 5686 (2006).
    • [6] E. Golowich, J. A. Hewett, S. Pakvasa, and A. A. Petrov, Phys. Rev. D 76, 095009 (2007).
    • [7] M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz, M. Pierini, V. Porretti, and L. Silvestrini, Phys. Lett. B 655, 162 (2007).
    • [8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 211802 (2007).
    • [9] M. Staric et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211803 (2007).
    • [10] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158.
    • [11] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 121802 (2008).
    • [12] L. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 96, 151801 (2006).
    • [13] L. M. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 131803 (2007).
    • [14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 211801 (2009).
    • [15] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80, 071103 (2009).
    • [16] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. Lett. 105, 081803 (2010).
    • [17] D. Asner et al. (CLEO Collaboration), Phys. Rev. D 86, 112001 (2012).
    • [18] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 101802 (2013).
    • [19] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 111, 231802 (2013).
    • [20] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3, S08005 (2008).
    • [21] M. Adinolfi et al., Eur. Phys. J. C 73, 2431 (2013).
    • [22] R. Aaij et al., JINST 8, P04022 (2013).
    • [23] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012), and 2013 partial update for the 2014 edition.
    • [24] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 718, 902 (2013).
    • [25] Y. Grossman, Y. Nir, and G. Perez, Phys. Rev. Lett. 103, 071602 (2009).
    • [26] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D 80, 076008 (2009).
    • [1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) and 2013 partial update for the 2014 edition.
    • [2] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 202001 (2007).
    • [3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 102001 (2011).
    • [4] I. Dunietz, Z. Phys. C 56, 129 (1992).
    • [5] Fayyazuddin, Mod. Phys. Lett. A 14, 63 (1999).
    • [6] A. K. Giri, R. Mohanta, and M. P. Khanna, Phys. Rev. D 65, 073029 (2002).
    • [7] I. Dunietz, Phys. Lett. B 270, 75 (1991).
    • [8] T. Gershon, Phys. Rev. D 79, 051301 (2009).
    • [9] T. Gershon and M. Williams, Phys. Rev. D 80, 092002 (2009).
    • [10] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3, S08005 (2008).
    • [11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 109, 172003 (2012).
    • [12] LHCb collaboration, Report No. LHCb-CONF-2012-029.
    • [13] M. Adinolfi et al., Eur. Phys. J. C 73, 2431 (2013).
    • [14] A. A. Alves, Jr., et al., JINST 8, P02022 (2013).
    • [15] R. Aaij et al., JINST 8, P04022 (2013).
    • [16] V. V. Gligorov and M. Williams, JINST 8, P02013 (2013).
    • [17] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
    • [18] I. Belyaev et al., Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, New York, 2010) p. 1155.
    • [19] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
    • [20] J. Allison et al. (GEANT4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006).
    • [21] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
    • [22] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, J. Phys. Conf. Ser. 331, 032023 (2011).
    • [23] W. D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).
    • [24] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 182001 (2013).
    • [25] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees (, Belmont, CA, 1984).
    • [26] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland, 1986, DESY-F31-86-02.
    • [27] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 109, 131801 (2012).
    • [28] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 87, 112009 (2013).
    • [29] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 04 (2013) 1.
    • [30] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
    • [31] E. Aitala et al. (E791 Collaboration), Phys. Lett. B 471, 449 (2000).
    • [32] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 724, 27 (2013).
    • [1] S. V. Demidov and D. S. Gorbunov, Phys. Rev. D 85, 077701 (2012).
    • [2] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 83, 054005 (2011).
    • [3] H. K. Park et al. (HyperCP Collaboration), Phys. Rev. Lett. 94, 021801 (2005).
    • [4] H. Hyun et al. (Belle Collaboration), Phys. Rev. Lett. 105, 091801 (2010).
    • [5] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
    • [6] D. Melikhov and N. Nikitin, Phys. Rev. D 70, 114028 (2004).
    • [7] A. A. Alves, Jr. et al. (LHCb Collaboration), JINST 3, S08005 (2008).
    • [8] R. Aaij et al., JINST 8, P04022 (2013).
    • [9] T. Sjo¨strand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.
    • [10] I. Belyaev et al., Proceedings of the 2010 IEEE Nuclear Science Symposium Conference (IEEE, New York, 2010), p. 1155.
    • [11] P. Golonka and Z. Was, Eur. Phys. J. C 45, 97 (2006).
    • [12] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
    • [13] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003); J. Allison et al. (GEANT4 Collaboration), IEEE Trans. Nucl. Sci. 53, 270 (2006).
    • [14] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, J. Phys. Conf. Ser. 331, 032023 (2011).
    • [15] G. Lanfranchi et al., Report No. CERN-LHCb-PUB-2009- 013.
    • [16] K. Abe et al. (Belle Collaboration), Phys. Lett. B 538, 11 (2002).
    • [17] T. Skwarnicki, Ph.D. thesis, Institute of Nuclear Physics, Krakow, 1986.
    • [18] R. Aaij et al. (LHCb Collaboration), arXiv:1301.5286 [J. High Energy Phys. (to be published)].
    • [19] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 86, 071102 (2012).
    • [20] J. A. Hernando Morata et al., Tech. Rep. LHCb-2008-073. CERN, Geneva, Report No. CERN-LHCb-2008-073, 2010.
    • [21] A. L. Read, J. Phys. G 28, 2693 (2002).
    • [1] R. Thorne, A. Martin, W. Stirling and G. Watt, Parton distributions and QCD at LHCb, arXiv:0808.1847 [INSPIRE].
    • [2] LHCb collaboration, Inclusive W and Z production in the forward region at ps = 7 TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].
    • [3] LHCb collaboration, A study of the Z production cross-section in pp collisions at ps = 7 TeV using tau nal states, JHEP 01 (2013) 111 [arXiv:1210.6289] [INSPIRE].
    • [4] D0 collaboration, V.M. Abazov et al., Precise study of the Z= boson transverse momentum distribution in pp collisions using a novel technique, Phys. Rev. Lett. 106 (2011) 122001 [arXiv:1010.0262] [INSPIRE].
    • [9] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.
    • [10] P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
    • [11] GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
    • [12] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [13] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
    • [14] LHCb collaboration, Absolute luminosity measurements with the LHCb detector at the LHC, 2012 JINST 7 P01010 [arXiv:1110.2866] [INSPIRE].
    • [15] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
    • [16] C. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].
    • [17] Z. Was, private communication, http://annapurna.ifj.edu.pl/ wasm/phNLO.htm.
    • [18] R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
    • [19] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
    • [20] R.D. Ball et al., A rst unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].
    • [21] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
    • [22] P. Nadolsky et al., Progress in CTEQ-TEA PDF analysis, arXiv:1206.3321 [INSPIRE].
    • [23] G. Ladinsky and C. Yuan, The nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) 4239 [hep-ph/9311341] [INSPIRE].
    • [24] C. Balazs and C. Yuan, Soft gluon e ects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].
    • [26] A. Ban , M. Dasgupta, S. Marzani and L. Tomlinson, Predictions for Drell-Yan and QT observables at the LHC, Phys. Lett. B 715 (2012) 152 [arXiv:1205.4760] [INSPIRE].
    • [28] S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].
    • 39 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
    • 40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
    • 41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
    • 42 University of Birmingham, Birmingham, United Kingdom
    • 43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
    • 44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 45 Department of Physics, University of Warwick, Coventry, United Kingdom
    • 46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
    • 47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
    • 50 Imperial College London, London, United Kingdom
    • 51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    • 52 Department of Physics, University of Oxford, Oxford, United Kingdom
    • 53 Syracuse University, Syracuse, NY, United States
    • 54 Pontif cia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to2
    • 55 Institut fur Physik, Universitat Rostock, Rostock, Germany, associated to11
    • 56 Institute of Information Technology, COMSATS, Lahore, Pakistan, associated to53
    • 57 University of Cincinnati, Cincinnati, OH, United States, associated to53
    • [1] S. Bianco, F. Fabbri, D. Benson, I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cimento 26 (7) (2003) 1, arXiv:hep-ex/0309021.
    • [2] D.-S. Du, CP violation for neutral charmed meson decays into CP eigenstates, Eur. Phys. J. C 50 (2007) 579, arXiv:hep-ph/0608313.
    • [3] F. Buccella, M. Lusignoli, A. Pugliese, P. Santorelli, CP violation in D meson decays: would it be a sign of new physics?, arXiv:1305.7343.
    • [4] M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild, How large can the SM contribution to CP violation in D0 − D0 mixing be?, J. High Energy Phys. 1003 (2010) 009, arXiv:1002.4794.
    • [5] Y. Grossman, A.L. Kagan, Y. Nir, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008, arXiv:hep-ph/0609178.
    • [6] A.A. Petrov, Searching for new physics with Charm, PoS BEAUTY 2009 (2009) 024, arXiv:1003.0906.
    • [7] LHCb Collaboration, R. Aaij, et al., Search for direct CP violation in D0 → h−h+ modes using semileptonic B decays, Phys. Lett. B 723 (2013) 33, arXiv: 1303.2614.
    • [8] LHCb Collaboration, R. Aaij, et al., Searches for CP violation in the D+ → φπ + and D+s → KS0π + decays, J. High Energy Phys. 1306 (2013) 112, arXiv: 1303.4906.
    • [9] LHCb Collaboration, R. Aaij, et al., Evidence for CP violation in time-integrated D0 → h−h+ decay rates, Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938.
    • [10] CLEO Collaboration, M. Artuso, et al., Amplitude analysis of D0 → K + K −π +π −, Phys. Rev. D 85 (2012) 122002, arXiv:1201.5716.
    • [11] I. Bediaga, et al., On a CP anisotropy measurement in the Dalitz plot, Phys. Rev. D 80 (2009) 096006, arXiv:0905.4233.
    • [12] BaBar Collaboration, B. Aubert, et al., Search for CP violation in neutral D meson Cabibbo-suppressed three-body decays, Phys. Rev. D 78 (2008) 051102, arXiv:0802.4035.
    • [13] LHCb Collaboration, R. Aaij, et al., Search for CP violation in D+ → K − K +π + decays, Phys. Rev. D 84 (2011) 112008, arXiv:1110.3970.
    • [14] LHCb Collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
    • [15] M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431, arXiv:1211.6759.
    • [16] R. Aaij, et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
    • [17] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Methods A552 (2005) 566, arXiv:physics/0503191.
    • [18] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilonprime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
    • [19] N.L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36 (1949) 149.
    • [20] M. Pivk, F.R. Le, Diberder, sPlot: a statistical tool to unfold data distributions, Nucl. Instrum. Methods A555 (2005) 356, arXiv:physics/0402083.
    • [21] FOCUS Collaboration, J. Link, et al., Study of the D0 → π −π +π −π + decay, Phys. Rev. D 75 (2007) 052003, arXiv:hep-ex/0701001.
    • [22] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001.
    • R. Aaij 40, B. Adeva 36, M. Adinolfi 45, C. Adrover 6, A. Affolder 51, Z. Ajaltouni 5, J. Albrecht 9, F. Alessio 37, M. Alexander 50, S. Ali 40, G. Alkhazov 29, P. Alvarez Cartelle 36, A.A. Alves Jr. 24,37, S. Amato 2, S. Amerio 21, Y. Amhis 7, L. Anderlini 17,f , J. Anderson 39, R. Andreassen 56, J.E. Andrews 57, R.B. Appleby 53, O. Aquines Gutierrez 10, F. Archilli 18, A. Artamonov 34, M. Artuso 58, E. Aslanides 6, G. Auriemma 24,m, M. Baalouch 5, S. Bachmann 11, J.J. Back 47, C. Baesso 59, V. Balagura 30, W. Baldini 16, R.J. Barlow 53, C. Barschel 37, S. Barsuk 7, W. Barter 46, Th. Bauer 40, A. Bay 38, J. Beddow 50, F. Bedeschi 22, I. Bediaga 1, S. Belogurov 30, K. Belous 34, I. Belyaev 30, E. Ben-Haim 8, G. Bencivenni 18, S. Benson 49, J. Benton 45, A. Berezhnoy 31, R. Bernet 39, M.-O. Bettler 46, M. van Beuzekom 40, A. Bien 11, S. Bifani 44, T. Bird 53, A. Bizzeti 17,h, P.M. Bjørnstad 53, T. Blake 37, F. Blanc 38, J. Blouw 11, S. Blusk 58, V. Bocci 24, A. Bondar 33, N. Bondar 29, W. Bonivento 15, S. Borghi 53, A. Borgia 58, T.J.V. Bowcock 51, E. Bowen 39, C. Bozzi 16, T. Brambach 9, J. van den Brand 41, J. Bressieux 38, D. Brett 53, M. Britsch 10, T. Britton 58, N.H. Brook 45, H. Brown 51, I. Burducea 28, A. Bursche 39, G. Busetto 21,q, J. Buytaert 37, S. Cadeddu 15, O. Callot 7, M. Calvi 20,j, M. Calvo Gomez 35,n, A. Camboni 35,
    • [2] Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
    • [4] LHCb collaboration, Measurement of b-hadron production fractions in 7 TeVpp collisions, Phys. Rev. D 85 (2012) 032008 [arXiv:1111.2357] [INSPIRE].
    • [5] M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization for exclusive, nonleptonic B meson decays: General arguments and the case of heavy light nal states, Nucl. Phys. B 591 (2000) 313 [hep-ph/0006124] [INSPIRE].
    • [6] R. Fleischer, N. Serra and N. Tuning, A new strategy for Bs branching ratio measurements and the search for new physics in Bs0 ! + , Phys. Rev. D 82 (2010) 034038 [arXiv:1004.3982] [INSPIRE].
    • [7] Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
    • [8] CLEO collaboration, S. Dobbs et al., Measurement of absolute hadronic branching fractions of D mesons and e+e ! DD cross-sections at the (3770), Phys. Rev. D 76 (2007) 112001 [arXiv:0709.3783] [INSPIRE].
    • [9] CLEO collaboration, J. Alexander et al., Absolute measurement of hadronic branching fractions of the Ds+ meson, Phys. Rev. Lett. 100 (2008) 161804 [arXiv:0801.0680] [INSPIRE].
    • [10] R. Fleischer, N. Serra and N. Tuning, Tests of Factorization and SU(3) Relations in B Decays into Heavy-Light Final States, Phys. Rev. D 83 (2011) 014017 [arXiv:1012.2784] [INSPIRE].
    • [11] J.A. Bailey et al., Bs ! Ds=B ! D semileptonic form-factor ratios and their application to BR(Bs0 ! + ), Phys. Rev. D 85 (2012) 114502 [Erratum ibid. D 86 (2012) 039904] [arXiv:1202.6346] [INSPIRE].
    • [12] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
    • [13] R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055 [INSPIRE].
    • [14] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
    • [15] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.
    • [16] D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
    • [17] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
    • [18] GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
    • [20] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
    • [21] L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classi cation and regression trees, Wadsworth international group, Belmont U.S.A. (1984).
    • [22] BABAR collaboration, P. del Amo Sanchez et al., Dalitz plot analysis of Ds+ ! K+K Phys. Rev. D 83 (2011) 052001 [arXiv:1011.4190] [INSPIRE].
    • [23] CLEO collaboration, G. Bonvicini et al., Dalitz plot analysis of the D+ ! K Phys. Rev. D 78 (2008) 052001 [arXiv:0802.4214] [INSPIRE].
    • 40 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
    • 41 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
    • 42 University of Birmingham, Birmingham, United Kingdom
    • 43 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
    • 44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 45 Department of Physics, University of Warwick, Coventry, United Kingdom
    • 46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
    • 47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
    • 50 Imperial College London, London, United Kingdom
    • 51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    • 52 Department of Physics, University of Oxford, Oxford, United Kingdom
    • 53 Syracuse University, Syracuse, NY, United States
    • 54 Pontif cia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to2
    • 55 Institut fur Physik, Universitat Rostock, Rostock, Germany, associated to11
    • 56 Institute of Information Technology, COMSATS, Lahore, Pakistan, associated to53
    • 57 University of Cincinnati, Cincinnati, OH, United States, associated to53
    • [1] BABAR collaboration, J. Lees et al., Evidence of B ! arXiv:1207.0698 [INSPIRE].
    • [2] Belle collaboration, I. Adachi et al., Measurement of B ! with a Hadronic Tagging Method Using the Full Data Sample of Belle, arXiv:1208.4678 [INSPIRE].
    • [3] H. Zou, R.-H. Li, X.-X. Wang and C.-D. Lu, The CKM suppressed B(Bs) ! D(s)P; D(s)V; D (s)P; D (s)V decays in perturbative QCD approach, J. Phys. G 37 (2010) 015002 [arXiv:0908.1856] [INSPIRE].
    • [4] R. Mohanta, Searching for new physics in the rare decay B+ ! Ds + , Phys. Lett. B 540 (2002) 241 [hep-ph/0205297] [INSPIRE].
    • [5] R. Mohanta and A. Giri, Possible signatures of unparticles in rare annihilation type B decays, Phys. Rev. D 76 (2007) 057701 [arXiv:0707.3308] [INSPIRE].
    • [6] C.-D. Lu, Calculation of pure annihilation type decay B+ ! Ds+ , Eur. Phys. J. C 24 (2002) 121 [hep-ph/0112127] [INSPIRE].
    • [7] BABAR collaboration, B. Aubert et al., Search for B
    • [21] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
    • [22] LHCb collaboration, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
    • [23] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
    • [24] M. Pivk and F.R. Le Diberder, SPlot: A Statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].
    • [25] L. Breiman, Bagging predictors, Mach. Learn. 24 (1996) 123.
    • [26] LHCb collaboration, First observations and branching fraction measurements of Bs0 to double-charm nal states, LHCb-CONF-2012-009.
    • [27] Belle collaboration, A. Drutskoy et al., Observation of B ! D K B 542 (2002) 171 [hep-ex/0207041] [INSPIRE].
    • K0( ) decays, Phys. Lett.
    • [28] S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1938) 60.
    • [29] E. Jaynes, Probability theory: the logic of science, Cambridge University Press, Cambridge, U.K. (2003).
    • [30] G.J. Feldman and R.D. Cousins, A Uni ed approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
    • [31] LHCb collaboration, First evidence of direct CP-violation in charmless two-body decays of Bs mesons, Phys. Rev. Lett. 108 (2012) 201601 [arXiv:1202.6251] [INSPIRE].
    • 44 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
    • 45 Department of Physics, University of Warwick, Coventry, United Kingdom
    • 46 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
    • 47 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
    • 48 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
    • 49 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
    • 50 Imperial College London, London, United Kingdom
    • 51 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
    • 52 Department of Physics, University of Oxford, Oxford, United Kingdom
    • 53 Syracuse University, Syracuse, NY, United States
    • 54 Pontif cia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
    • 55 Institut fur Physik, Universitat Rostock, Rostock, Germany, associated to 11
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Precision measurement of the B0s-B¯0s oscillation frequency with the decay B0s → D−sπ+

    201376
    76%

    Measurement of the fragmentation fraction ratio fs/fd and its dependence on B meson kinematics

    201395
    95%

    Measurement of J/psi production in pp collisions at sqrt(s)=2.76 TeV

    201395
    95%

    Measurement of CP observables in B0 -> D K*0 with D -> K+ K-

    201383
    83%

    First evidence for the annihilation decay mode B+→D+sφ

    201396
    96%

    Measurement of D0-D0bar mixing parameters and search for CP violation using D0->K+pi- decays

    201372
    72%

    Measurement of the B0→K∗0e+e− branching fraction at low dilepton mass

    201395
    95%

    Model checking for autonomic systems specified with ASSL

    200988
    88%

    Component-oriented behavior extraction for autonomic system design

    200980
    80%

    Towards model checking with Java PathFinder for autonomic systems specified and generated with ASSL.

    200986
    86%

    ASSL specification and code generation of self-healing behavior for NASA Swarm-Based Systems

    200981
    81%

    Extracting component-oriented behaviour for self-healing enabling.

    201074
    74%

    A self-adaptive architecture for autonomic systems developed with ASSL.

    200986
    86%

    Modeling the image-processing behavior of the NASA voyager mission with ASSL

    200982
    82%

    Component-Oriented Behavior Extraction for Autonomic System Design

    200981
    81%

    Measurement of $b$-hadron branching fractions for two-body decays into charmless charged hadrons

    201280
    80%

    Studies of beauty baryon decays to $D^0 p h^-$ and $\Lambda_c^+ h^-$ final states

    201480
    80%

    Search for B+/- --> [K-/+ pi+/-]_D K+/- and upper limit on the b --> u amplitude in B+/- --> D K+/-

    200472
    72%

    Measurement of the ratio of branching fractions View the MathML source and the direct CP asymmetry in B0?K?0?

    201380
    80%

    Measurement of the inclusive differential jet cross section in pp collisions at root s=2.76 TeV

    201377
    77%

    SSL/TLS Web Server Load Optimization using Adaptive SSL with Session Handling Mechanism

    201080
    80%

    Measurement of $b$-hadron branching fractions for two-body decays into charmless charged hadrons

    201282
    82%

    Measurement of the Λb0, Ξb-, and Ωb- Baryon Masses

    201397
    97%

Share - Bookmark

Related to

  • egiEGI virtual organizations: lhcb

Cite this article