LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: food and beverages
arxiv: Physics::Optics, Quantitative Biology::Biomolecules, Physics::Medical Physics, Condensed Matter::Soft Condensed Matter, Computer Science::Databases
We investigate the effect of various spherical nanoparticles on chain dimensions in polymer melts for high nanoparticle loading which is larger than the percolation threshold, using molecular dynamics simulations. We show that polymer chains are unperturbed by the presence of repulsive nanoparticles. In contrast polymer chains can be perturbed by the presence of attractive nanoparticles when the polymer radius of gyration is larger than the nanoparticle radius. At high nanoparticle loading, chains can be stretched and flattened by the nanoparticles, even oligomers can expand under the presence of attractive nanoparticles of very small size.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1 S. K. Kumar and R. Krishnamoorti, Annu. Rev. Chem. Biomol. Eng., 2010, 1, 37.
    • 2 A. Tuteja, P. Duxbury and M. Mackay, Phys. Rev. Lett., 2008, 100, 077801.
    • 3 S. Sen, Y. Xie, S. K. Kumar, H. Yang, A. Bansal, D. L. Ho, L. Hall, J. B. Hooper and K. S. Schweizer, Phys. Rev. Lett., 2007, 98, 128302.
    • 4 N. Jouault, F. Dalmas, S. Said, E. Di Cola, R. Schweins, J. Jestin and F. Boue, Macromolecules, 2010, 43, 9881.
    • 5 M. K. Crawford, R. J. Smalley, G. Cohen, B. Hogan, B. Wood, S. K. Kumar, Y. B. Melnichenko, L. He, W. Guise and B. Hammouda, Phys. Rev. Lett., 2013, 110, 196001.
    • 6 K. Nusser, S. Neueder, G. J. Schneider, M. Meyer, W. Pyckhout-Hintzen, L. Willner, A. Radulescu and D. Richter, Macromolecules, 2010, 43, 9837.
    • 7 A. Nakatani, W. Chen, R. Schmidt, G. Gordon and C. Han, Polymer, 2001, 42, 3713.
    • 8 M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van Horn, Z. Guan, G. H. Chen and R. S. Krishnan, Science, 2006, 311, 1740.
    • 9 A. L. Frischknecht, E. S. McGarrity and M. E. Mackay, J. Chem. Phys., 2010, 132, 204901.
    • 10 F. W. Starr, T. B. Schroder and S. C. Glotzer, Phys. Rev. E: Stat., Nonlinear, So Matter Phys., 2001, 64, 021802.
    • 11 J. Huang, Z. Mao and C. Qian, Polymer, 2006, 47, 2928.
    • 12 M. Goswami and B. G. Sumpter, Phys. Rev. E: Stat., Nonlinear, So Matter Phys., 2010, 81, 041801.
    • 13 G. G. Voyiatzis, E. Voyiatzis and D. N. Theodorou, Eur. Polym. J., 2011, 47, 699.
    • 14 T. V. M. Ndoro, E. Voyiatzis, A. Ghanbari, D. N. Theodorou, M. C. Bohm and F. Mu¨ller-Plathe, Macromolecules, 2011, 44, 2316.
    • 15 G. D. Smith, D. Bedrov, L. Li and O. Byutner, J. Chem. Phys., 2002, 117, 9478.
    • 16 T. Desai, P. Keblinski and S. K. Kumar, J. Chem. Phys., 2005, 122, 134910.
    • 17 P. J. Dionne, R. Osizik and C. R. Picu, Macromolecules, 2005, 38, 9351.
    • 18 A. Karatrantos, R. J. Composto, K. I. Winey and N. Clarke, Macromolecules, 2011, 44, 9830.
    • 19 A. Karatrantos, R. J. Composto, K. I. Winey, M. Kro¨ger and N. Clarke, Macromolecules, 2012, 45, 7274.
    • 20 A. Karatrantos, N. Clarke, R. J. Composto and K. I. Winey, So Matter, 2013, 9, 3877.
    • 21 M. Vacatello, Macromolecules, 2001, 34, 1946.
    • 22 M. Vacatello, Macromolecules, 2002, 35, 8191.
    • 23 M. Vacatello, Macromol. Theory Simul., 2003, 12, 86.
    • 24 M. J. Powell, Phys. Rev. B: Condens. Matter Mater. Phys., 1979, 20, 4194.
    • 25 H. Bekker, H. J. C. Berendsen, E. J. Dijkstra, S. Achterop, R. van Drunen, D. van der Spoel, A. Sijbers, H. Keegstra, B. Reitsma and M. K. R. Renardus, Physics Computing 92, 1993, 252.
    • 26 H. J. C. Berendsen, D. van der Spoel and R. van Drunen, Comput. Phys. Commun., 1995, 91, 43.
    • 27 E. Lindahl, B. Hess and D. van der Spoel, J. Mol. Model., 2001, 7, 306.
    • 28 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark and H. Berendsen, J. Comput. Chem., 2005, 26, 1701.
    • 29 K. Kremer and G. S. Grest, J. Chem. Phys., 1990, 92, 5057.
    • 30 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
    • 31 M. Bulacu and E. van der Giessen, J. Chem. Phys., 2005, 123, 114901.
    • 32 R. Auhl, R. Everaers, G. S. Grest, K. Kremer and S. J. Plimpton, J. Chem. Phys., 2003, 119, 12718.
    • 33 W. F. van Gunsteren and H. C. J. Berendsen, Mol. Simul., 1988, 1, 173.
    • 34 J. Liu, Y. Wu, J. Shen, Y. Gao, L. Zhang and D. Cao, Phys. Chem. Chem. Phys., 2011, 13, 13058.
    • 35 M. Pu¨tz, K. Kremer and G. S. Grest, Europhys. Lett., 2000, 49, 735.
    • 36 R. S. Hoy and M. O. Robbins, Phys. Review E, 2005, 72, 061802.
    • 37 J. T. Kalathi, G. S. Grest and S. K. Kumar, Phys. Rev. Lett., 2012, 109, 198301.
    • 38 P. Flory, Statistical Mechanics of Chain Molecules, Hanser Publishers, Munich, 1989.
    • 39 M. Rubinstein and R. H. Colby, Polymer Physics, Oxford University Press, New York, 2003.
    • 40 R. C. Picu and M. S. Ozmusul, J. Chem. Phys., 2003, 118, 11239.
    • 41 K. Nusser, G. I. Schneider, W. Pyckhout-Hintzen and D. Richter, Macromolecules, 2011, 44, 7820.
    • 42 F. M. Erguney, H. Lin and W. L. Mattice, Polymer, 2006, 47, 3689.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article