Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tuohy, Simon; Podoleanu, Adrian G.H. (2010)
Publisher: Optical Society of America
Languages: English
Types: Article
Subjects: RE
In the present paper we investigate the possibility of narrowing the depth range of a physical Shack - Hartmann (SH) wavefront sensor (WFS) by using coherence gating. For the coherence gating, two low coherence interferometry (LCI) methods are evaluated and proof of principle configurations demonstrated: (i) a time domain LCI method based on phase shifting interferometry and (ii) a spectral domain LCI method, based on tuning a narrow band optical source. The two configurations are used to demonstrate each, the possibility of constructing a coherence gated (CG) SH/WFS. It is shown that these configurations produce spot patterns similar to those provided by a conventional SH/WFS. The two proof of principle configurations are also used to illustrate elimination of stray reflections in the interface optics which normally disturb the operation of conventional SH/WFSs. The speed and noise performance of the two CG-SH/WFS implementations are discussed.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178-1181 (1991).
    • 2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492-1499 (1987).
    • 3. M. Minsky, “Microscopy apparatus US patent 3013467,” (Ser, 1957).
    • 4. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532-8546 (2005).
    • 5. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405-412 (2002).
    • 6. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-indexmismatched media,” J. Microsc. 192(2), 90-98 (1998).
    • 7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142-2144 (2004).
    • 8. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31(19), 3678-3686 (1992).
    • 9. R. Navarro, and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951-953 (1999).
    • 10. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44(30), 6419-6425 (2005).
    • 11. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518-526 (2006).
    • 12. B. C. Platt, and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).
    • 13. D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026- 1030 (2005).
    • 14. J. Liang, and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873-2883 (1997).
    • 15. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497-506 (2001).
    • 16. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences, 82544799 (2002).
    • 17. J. R. Fienup, and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609-620 (2003).
    • 18. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123-1130 (2003).
    • 19. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345-3353 (2006).
    • 20. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29(19), 2255-2257 (2004).
    • 21. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137-17142 (2006).
    • 22. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919-925 (1992).
    • 23. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874-2883 (2004).
    • 24. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340-342 (1997).
    • 25. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
    • 26. J. E. Greivenkamp, and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing, 501-599 (1992).
    • 27. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183-2189 (2003).
    • 28. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462-1464 (2006).
    • 29. G. Häusler, and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”-New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
    • 30. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286-6295 (2005).
    • 31. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Proc. of SPIE, ser. Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components (2002), pp. 148-160.
    • 32. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937-7947 (2005).
    • 33. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922-16932 (2007).
    • 34. R. G. Cucu, M. W. Hathaway, A. G. Podoleanu, and R. B. Rosen, “Active axial eye motion tracking by extended range closed loop OPD-locked white light interferometer for combined confocal/en face optical coherence tomography imaging of the human eye fundus in vivo,” (2009), p. 73721R.
    • 35. J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345-356 (2002).
    • 36. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultrahigh-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049-2051 (2007).
    • 37. Y. Watanabe, and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
    • 38. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1- m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406-8420 (2008).
    • 39. A. Gh, Podoleanu, R. G. Cucu, R. B. Rosen, G. M. Dobre, J. A. Rogers, D. A. Jackson, and V. R. Shidlovski, “Adjustable coherence length sources for low-coherence interferometry,” (Proc of SPIE; 2002), pp. 116-124.
    • 40. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083-11094 (2008).
    • 41. R. E. Bedford, and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564- 565 (1957).
    • 42. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400-409 (2005).
    • 43. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17(8), 1440-1453 (2000).
  • No similar publications.

Share - Bookmark

Cite this article